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Subcritical Bifurcations and Nonlinear Balloons in Faraday Waves

Peilong Chen and Kuo-An Wu
Department of Physics and Center for Complex Systems, National Central University, Chungli 320, Taiwan

(Received 2 May 2000)

Bicritical points at wave numbers kb larger than the critical wave numbers kc are found in parametric
surface waves (Faraday waves) using both numerical simulations and nonlinear analysis. Because kb-kc

is small, it is argued that subcritical bifurcations at k . kb can be easily observed in experiments. In
the second part we present a generic argument predicting the existence of nonlinear states resembling a
balloon outside the instability region. The prediction is confirmed in simulations and it is argued to apply
to other systems with similar instability curves.

PACS numbers: 47.20.Ky, 47.35.+ i, 47.54.+ r
Parametric surface waves have been recently studied as
a pattern formation in dissipative systems [1]. They are
fluid surface waves, also called Faraday waves, that are
generated by a vertical vibration [2]. The linear instabil-
ity in an ideal fluid was studied [3]. The complete lin-
ear analysis of a viscous fluid, however, has been worked
out only recently [4], although the driving threshold can
be computed only numerically. Subsequently, analyti-
cal expansions of thresholds at small dampings were de-
rived [5,6].

Extended regular patterns have been observed in experi-
ments [7] near the threshold, and particularly interesting
are the observations of the quasiperiodic patterns with five-
fold, eightfold, and tenfold symmetries. In earlier theoreti-
cal attempts [8,9], standing wave amplitude equations were
derived in the context of an ideal fluid flow, plus a damp-
ing postulate, to explain the patterns. However, these cal-
culations cannot explain the variety of patterns observed.
Rigorous derivation was later given [6], and its prediction
agrees very well quantitatively with the observations. Re-
cently, more patterns have been obtained in experiments
using non-Newtonian fluids [10].

Hysteresis of the Faraday wave instability has also been
observed when the wave was driven out of the resonance
frequency [11,12], indicating a subcritical bifurcation.
Amplitude equations up to the fifth order were derived
to predict the hysteresis boundary [8,12–14]. However,
these calculations were again based on the Lagrangian
method [15], which neglects the rotational component of
the flow. As indicated in [6], the lowest order contributions
to the cubic damping coefficient are of the same order for
both irrotational and rotational components of the flow.
Hence the latter cannot be neglected in a nonlinear theory,
even in the limit of small dissipations.

In this paper we first study bifurcation behaviors at dif-
ferent wave numbers by using rigorous nonlinear analy-
sis [6] and numerical simulations of the incompressible
Navier-Stokes equations. Near the critical driving, it is
equivalent to tune the wave number or driving frequency.
Bicritical points are found separating the supercritical and
subcritical bifurcations. Their locations are obtained and
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the hysteresis boundaries can be determined in simulations.
In the second part, we discuss waves near the tip of the
neutral stability boundary. A generic argument shows an
interesting formation of nonlinear states resembling a bal-
loon in the wave amplitude-driving strength space. This
prediction is confirmed by the simulations.

Two-dimensional numerical simulations are done for in-
compressible fluids with free upper surfaces and rigid flat
bottoms. Periodic boundary conditions are used in the
horizontal direction. A dynamical boundary conforming
grid system changing with the free surface is generated by
the Poisson equations,

=2j�x, z� � P�x, z�, =2z �x, z� � Q�x, z� .

Here �x, z� is the physical coordinate and �j, z � is the
Cartesian coordinate in a square computational domain.
The functions P and Q control mapping between �x, z�
and �j, z � [16].

Time evolution of the flow field v is computed with
a semi-implicit time marching scheme of incompressible
Navier-Stokes equations in the comoving frame (moving
with the vertical vibration),

≠v
≠t

1 �v ? =�v � 2
1
r

=p 1
n

r
=2v 2 G�t�ẑ . (1)

Here r is the fluid density, n the viscosity, and G�t� �
gr 1 f cosvt, with gr the gravitational acceleration, f
the driving amplitude, and v the driving frequency. Be-
cause there is no evolution equation for the pressure p, we
take =? of Eq. (1) to obtain a pressure Poisson equation
with only spatial derivatives [17]. On the free surface, pres-
sure is determined by the normal stress condition involving
surface tension s. The surface velocity, which gives the
evolution of the free surface, is determined by the tangen-
tial stress condition. On the flat bottom standard no-slip
conditions are used. Finally, the Poisson equations are
solved by the method of successive over relaxation (SOR).

We briefly review here that the nonlinear analysis formu-
lated in [6] essentially computes the third-order coefficient
g of the standing wave amplitude equation
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dA
dt

� a�f 2 f0�A 2 gA3. (2)

Here A is the wave amplitude, f0 the threshold, and
a�f 2 f0� the linear growth rate.

It is most convenient in Faraday waves to use 1�v0
(v0 � v�2) as the time scale and 1�k0, with k0 defined by
the inviscid dispersion relation v

2
0 � grk0 1 sk3

0�r [18],
as the length scale. The driving amplitude f is measured
in units of 4v

2
0�k0. Since we consider only infinite-depth

fluids, the system is characterized by two dimensionless
parameters defined as S � sk3

0�rv
2
0 and g � 2nk2

0�v0.
Having the range of 0 # S # 1, S is the measure of the
capillarity: S � 0 being the pure gravity wave and S � 1
the pure capillary wave. The second parameter g is the
damping strength.

A typical stability diagram with S � 0.6553 and g �
0.9505 is shown in Fig. 1. Marked as v�2 is the linearly
unstable region of the subharmonic excitations with a fre-
quency v0 � v�2 (similarly for v and 3v�2). The criti-
cal wave number which has the lowest driving threshold is
labeled as kc. This is usually in the subharmonic region,
although in certain conditions [5] it is in the harmonic (v)
region. Also labeled as ka is the tip of the subharmonic
region.

We first consider the nonlinearly saturated wave ampli-
tudes. Simulation surface profiles are Fourier transformed
to get the saturated amplitude Am of the primary wave
number k, which is set by the lateral dimension of the
cell. Weakly nonlinear analysis says that Am near thresh-
old is expected to scale as the square root of f 2 f0�k�. In
Fig. 2 we show Am as filled symbols at three wave numbers
with S � 0.6553 and g � 0.095 05. At kc and 0.8kc, the
agreements are excellent between the limiting slopes near
thresholds of the simulation results (filled symbols) and the
straight line slopes from the nonlinear analysis [given by
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FIG. 1. Neutral stability curves for S � 0.6553 and g �
0.9505. Marks v�2, v, and 3v�2 represent wave frequencies.
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a�g in Eq. (2)]. This comparison also gives us confidence
on the numerical simulations and amplitude equation com-
putations, both of which are highly nontrivial.

At 1.1kc we see in Fig. 2 that the third-order co-
efficient g is negative (the negative slope line). The
instability from null to wave states becomes a subcritical
bifurcation instead of the supercritical ones at smaller
wave numbers. The saturated wave amplitudes (solid
squares) are consistent with the subcritical picture. There
should be a branch of unstable nonlinear states connecting
f0�1.1kc� � 0.1426 at Am � 0 to the solid squares. We
can get tight upper and lower bounds of the amplitudes
of these unstable nonlinear states by starting simulations
at different initial amplitudes, as illustrated in the inset of
Fig. 2. These unstable states are plotted in the figure as
open squares, and they again agree with the straight line.
The hysteresis boundary is then also obtained.

We thus have a bicritical point at a wave number, which
we will call kb , separating supercritical and subcritical
bifurcations. What are the implications on experiments?
We find that kb . kc in all parameter ranges and it is
always supercritical at kc. In a large experimental cell we
expect wave excitations at kc via a supercritical bifurcation
under the condition of slowly increasing driving. However,
in a finite cell the wave number is restricted to a set of
discrete values. The effects of this restriction have already
been seen in experiments [11,12,19]. Since kb is close to
kc, especially at small dampings (cf. Fig. 3), a small shift
in k could result in the subcritical region.

Another possibility is that even in a large cell a finite
jump of the driving from below the threshold to above can
be applied. The excited wave number can then possibly be
different from kc, although there is not much understand-
ing in this aspect yet.
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FIG. 2. Nonlinearly saturated wave amplitudes as functions of
the driving amplitude at three different wave numbers. The sym-
bols are simulation results and the straight lines are prediction of
the nonlinear analysis. Data for 0.8kc are plotted with a shift of
Df � 20.157. Typical time evolutions of the wave amplitudes
at 1.1kc are shown in the inset.
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FIG. 3. The bicritical wave number kb as functions of g at
different S. In the inset, kb�S� is shown at g � 0.1.

The dependence of kb on S is similar for all values of
the damping parameter g. An example is shown in the
inset of Fig. 3 with g � 0.1. The ratio kb�kc is largest
for the mixed gravity-capillary wave near S � 0.22 and
decreases toward both S � 0 and S � 1.

The dependence of kb on g is more interesting. Figure 3
shows three such dependences at S � 0, 0.44, and 1. The
difference between kb and kc is small, only about 10%
even at g � 1. For example, when water is driven at a
frequency of 100 Hz, yielding S � 0.89 and g � 0.0073,
we have kb�kc 2 1 � 8 3 1025.

As g ! 0, kb ! kc. This indicates that the third-order
coefficient g in an ideal fluid will be exactly zero at k0
(� kc now). Interestingly, this property can be derived
from symmetry arguments only: For a traveling wave
ak0 exp�ik0x 2 iv0t� 1 c.c. in an ideal fluid, symmetries
dictate that the evolution equation of ak0 near threshold
must be (see, e.g., [8])

�ak0 � 2ifa�
2k0

1 i�T1jak0 j
2 1 T2ja2k0 j

2�ak0 . (3)

Here T ’s are real numbers. Now one can construct the
amplitude equation for a standing wave, which is what is
observed in experiments, from ak0 and a2k0 [�ak0 , a2k0 �
having a relative phase of �1, 2i�]. The resulting third-
order coefficient will always be zero. Furthermore, since
this property results from symmetries only, we expect simi-
lar behaviors for higher frequency excitations (waves ex-
cited at v, 3v�2, 2v, …). This is indeed confirmed in the
numerical simulations of the harmonic responses.

Now we switch our discussion to the waves near ka.
Referring to Fig. 1, when the driving f passes over the
upper boundary of the linear instability region, the system
becomes linearly stable just as when f is below the thresh-
old value. In principle, numerical simulations can reveal
the bifurcation type at this upper branch. Nevertheless, we
want to present a generic model as k approaches ka. At a
particular k, when f near the lower and upper thresholds
(denoted as f1 and f2, respectively) we have two separate
amplitude equations,

�A � diai�f 2 fi�A 2 giA
3 2 hiA

5, i � 1, 2 ,
(4)

with d1 � 1 and d2 � 21. Here i � 1, 2 represent the
bifurcations at f1 and f2, respectively. The fifth-order
terms are also included for the possibility of gi , 0.

As k ! ka, f1 and f2 approach each other. A single
amplitude equation can then be used for k near ka (with
suitable b . 0),

�A � b�f 2 f1� �f2 2 f�A 2 gA3 2 hA5, k # ka

(5)

� 2��f 2 fa�2 1 d�k 2 ka��A 2 gA3 2 hA5. (6)

In Eq. (6) a generalized linear term also valid for k . ka

(with d . 0) is modeled, although its detail form is not
essential for the validity of the following discussions.

In general, the bifurcations at f1 and f2 are not related;
as in Eq. (4) they are controlled by the signs of g1 and
g2 separately. On the other hand, when we have a single
equation (5) at k ! ka, they become correlated. Further-
more both nonlinear analysis and numerical simulations as
discussed earlier already indicate that g here is negative.

The dynamical picture of the excited waves near ka

following the above equation is illustrated in Fig. 4. At
k , ka (the left diagram) we have subcritical bifurcations
at both f1 and f2, and the stable nonlinear states are shown
as the solid line. Vertical arrows are also drawn to indicate
how the amplitude will evolve with time.

At k � ka, the linear term of Eq. (5) becomes zero at
f � f0 and is never positive for all f. The dynamics is
illustrated in the center diagram of Fig. 4, which may be
called the formation of a balloon. When k . ka, the linear
term of Eq. (6) is always negative, i.e., the null state is
always linearly stable. We get here a detached balloon
from the axis as shown in the right diagram. Although
the system is now linearly stable for all f, nonlinear states
still exist.

Because the picture described in Fig. 4 depends only
on a neutral stability curve turning back on a particular
parameter with subcritical bifurcations, it should happen
in any system under similar conditions.

AA A

f f f

FIG. 4. Formation and detachment of a balloon after the merge
of the lower and upper thresholds. The solid lines represent
stable nonlinear states, and the dashed lines represent unstable
ones. The left diagram corresponds to k , ka, the middle to
k � ka, and the right to k . ka.
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FIG. 5. Time evolutions of wave amplitudes at k . ka. In the
inset a typical surface profile of large amplitude states is shown.

We show in Fig. 5 typical simulation results at k . ka.
There is the signature of an unstable nonlinear state near
A � 0.33, corresponding to the lower branch (the dashed
line) in the right diagram of Fig. 4. For A . 0.33 the
amplitude indeed increases and leads to a droplet ejecting
state (as shown in the inset of Fig. 5). However, our current
simulation code cannot handle the pinch off of a droplet
properly.

In conclusion, we first find that at large wave numbers
the Faraday wave instabilities become subcritical. Be-
cause of the closeness of the critical and bicritical wave
numbers, it is expected to be easily observable in experi-
ments. Second, we demonstrate the formation of balloon-
shaped nonlinear states when the wave numbers are outside
the tip of the instability region. A general argument based
on the amplitude equation indicates that this is generic for
systems with similar neutral stability curves.

This work is supported by the National Science Council
of Taiwan under Contract No. NSC 89-2112-M-008-011.

[1] For a review, see M. C. Cross and P. C. Hohenberg, Rev.
Mod. Phys. 65, 851 (1993).

[2] M. Faraday, Philos. Trans. R. Soc. London 121, 319 (1831).
3816
[3] T. Benjamin and F. Ursell, Proc. R. Soc. London 225, 505
(1954).

[4] K. Kumar and L. S. Tuckerman, J. Fluid Mech. 279, 49
(1994); K. Kumar, Proc. R. Soc. London A 452, 1113
(1996).

[5] H. W. Müller et al., Phys. Rev. Lett. 78, 2357 (1997).
[6] P. Chen and J. Viñals, Phys. Rev. Lett. 79, 2670 (1997);

Phys. Rev. E 60, 559 (1999).
[7] B. Christiansen, P. Alstrøm, and M. T. Levinsen, Phys.

Rev. Lett. 68, 2157 (1992); W. S. Edwards and S. Fauve,
Phys. Rev. E 47, R788 (1993); J. Fluid Mech. 278, 123
(1994); M. Torres et al., Chaos Solitons Fractals 5, 2089
(1995); T. Besson, W. S. Edwards, and L. S. Tuckerman,
Phys. Rev. E 54, 507 (1996); A. Kudrolli and J. P. Gollub,
Physica (Amsterdam) 97D, 133 (1996); D. Binks and
W. van de Water, Phys. Rev. Lett. 78, 4043 (1997);
D. Binks, M.-T. Westra, and W. van de Water, Phys. Rev.
Lett. 79, 5010 (1997).

[8] S. T. Milner, J. Fluid Mech. 225, 81 (1991).
[9] J. W. Miles, J. Fluid Mech. 248, 671 (1993); 269, 353

(1994); P. L. Hansen and P. Alstrøm, J. Fluid Mech. 351,
301 (1997).

[10] C. Wagner, H. W. Müller, and K. Knorr, Phys. Rev. Lett.
83, 308 (1999); H. Arbell and J. Fineberg, Phys. Rev. Lett.
84, 654 (2000); H.-J. Pi et al., Phys. Rev. Lett. 84, 5316
(2000).

[11] F. Simonelli and J. P. Gollub, J. Fluid Mech. 199, 471
(1989); A. D. D. Craik and J. Armitage, Fluid Dyn. Res.
15, 129 (1995).

[12] S. Douady, F. Fluid Mech. 221, 383 (1995).
[13] J. W. Miles, J. Fluid Mech. 146, 285 (1984).
[14] S. P. Decent and A. D. D. Craik, J. Fluid Mech. 293, 237

(1995).
[15] J. W. Miles, J. Fluid Mech. 75, 419 (1976).
[16] For further details see, e.g., Numerical Grid Generation,

edited by J. F. Thompson (North-Holland, Amsterdam,
1982).

[17] See, e.g., C. Pozrikidis, Introduction to Theoretical and
Computational Fluid Dynamics (Oxford University Press,
New York, 1997).

[18] L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Pergamon, New York, 1959).

[19] J. Bechhoefer, V. Ego, S. Manneville, and B. Johnson,
J. Fluid Mech. 288, 325 (1995).


