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Global Coupling with Time Delay in an Array of Semiconductor Lasers
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Synchronization due to a weak global coupling with time delay in a semiconductor laser array is in-
vestigated both in the cw and self-pulsing regimes. A generalized form of the Kuramoto phase equations
is derived and discussed analytically. The time delay is shown to induce in-phase synchronization in
all dynamical regimes. Another form of synchronization is found which leads to local extinction of
self-pulsing in the array.
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Many models developed in physics, chemistry, and
biology are formulated in terms of weakly coupled iden-
tical oscillators. Since signals propagate with a finite
velocity, the coupling among the oscillators is, in principle,
time delayed. The influence of this delay was studied re-
cently for various models such as pulse-coupled oscillators
[1] and phase models [2]. Multistability [3,4] and oscilla-
tor death [5] were found to be possible consequences of
the delay.

The focus of this Letter is on the nonlinear dynamics of
globally coupled oscillators with time delay, illustrated by
an array of semiconductor lasers (SCL). Aside from fun-
damental interest, this subject may also have technological
applications. In arrays of semiconductor lasers, synchro-
nizing the lasing elements in phase is of importance in
order to obtain a large output power ~ j

P
j Ejj

2 concen-
trated in a single-lobed far field pattern [6]. To this end,
local coupling between the neighboring laser elements via
overlapping evanescent fields was considered in [7]. More
recently, local and global couplings were compared in the
absence of delay [8] with the conclusion that global cou-
pling is more efficient to achieve stationary in-phase opera-
tion. A similar result concerning nonstationary regimes
has just been found numerically [9] for delayed global
coupling via a feedback mirror. This is the situation we
analyze in this Letter, for identical SCL.

SCL are known to be extremely sensitive to optical feed-
back and to undergo a series of instabilities from self-
pulsing to coherence collapse as the feedback strength is
increased [10]. We show that in the cw regime, character-
ized by time independent laser intensities, the time delay
induces bistability between in-phase and antiphase states
by increasing the stability domain of in-phase operation.
For larger coupling strength, in-phase cw operation can
be destabilized in two ways. First, there is a degenerate
Hopf bifurcation to antiphase self-pulsing that exists in-
dependently of the delay. Second, if the delay is at least
comparable to the relaxation oscillation period of the soli-
tary SCL, another, nondegenerate, Hopf bifurcation exists
which leads to in-phase self-pulsing. To study this nonsta-
tionary regime, a set of dynamical equations that general-
ize the Kuramoto model [11] is derived. In these equations,
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each SCL is a two-frequency oscillator with one phase
variable describing oscillations at the optical frequency and
a second phase variable related to oscillations in the laser
intensities at the relaxation frequency. Our main result,
obtained analytically, is that by properly tuning the posi-
tion of the feedback mirror such an in-phased self-pulsing
can be made stable for a broad range of coupling strength,
hence preserving the in-phase synchronization in a nonsta-
tionary regime. In addition, we show that, if the time delay
is large enough, the primary instability of the in-phase cw
regime is always the Hopf bifurcation to an in-phase pe-
riodic regime. Numerically, in-phase synchronization is
seen to persist in quasiperiodic and even in the chaotic
regimes in a wide domain of parameter values. Addition-
ally, if the number of elements in the array is odd, we found
another form of synchronization, featuring localized ex-
tinction of self-pulsing in the array. Similar behavior was
reported experimentally and theoretically for two mutually
coupled SCL [12].

An array of SCL can be modeled by N coupled Lang-
Kobayashi equations [13] written in dimensionless form:

dEj

dt
� �1 2 ia�ZjEj 1 i

h

N

NX
n�1

e2ivtD2idnj

3 En�t 2 tD� , (1)

g21 dZj

dt
� P 2 Zj 2 �1 1 2Zj� jEjj

2. (2)

In these equations, Ej is the slowly varying envelope of
the electric field and Zj is the carrier excess density of
the jth laser. The time unit is the photon cavity life-
time tp � 2 3 10212 s, g � tp�tc � 1023 is the ratio
of the photon to carrier lifetimes, a � 5 is the linewidth
enhancement factor, and P is the pump parameter which
is proportional to the injection current above threshold.
The coupling strength between the lasers is characterized
by the parameter h and is assumed to be small: h ø 1.
The phase of the coupling is 2vtD , where v � v0tp

is the normalized optical frequency and tD � 2L��ctp�
is the external cavity round-trip time normalized by tp .
We consider the most symmetric situation where all of the
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coupling terms in (1) have identical optical phases: dnj �
0. This can be approximated experimentally, e.g., by plac-
ing a spherical feedback mirror at the focus of a converg-
ing lens (for example, mirror radius �1 mm, array size
�500 mm, L * 5 cm).

The cw solutions of Eqs. (1) and (2) are of the form
Ej�t� � E exp�ifj�t�� and Zj�t� � Z . In the in-phase
state, fj � f, whereas antiphase cw states are charac-
terized by

P
n exp�ifn� � 0. In what follows we will

deal only with the antiphase states such that fn 2 fj �
2�n 2 j�kp�N .

We analyze Eqs. (1) and (2) in the domain of parameters
g, h ø 1 and in the limit a ¿ 1, as in [14]. It turns
out that the qualitative results obtained in that limit are
remarkably robust when a is reduced to a more realistic
value �a � 5�. For a, a

p
g,

p
g�h ¿ 1, Eqs. (1) and (2)

admit solutions of the form

Ej � E

∑
1 1

rj

a
sin�Vt 1 uj�

∏

3 expi�fj 2 rj sin�Vt 1 uj�� ,

Zj � Z 1 V
rj

a
cos�Vt 1 uj� .

Here V � �2gP�1�2 is the relaxation oscillation frequency
of the isolated SCL, which is in the GHz range. Hereafter,
we will call fj and uj the optical and relaxation oscilla-
tion phases, respectively, of the laser j. With the com-
plex amplitude zj � rj exp�iuj�, the normalized coupling
parameter K � ahg21�P 1 1�2�21, the slow time t �
g�P 1 1�2�t, and tD � g�P 1 1�2�tD , a two-time-scale
analysis yields

dfj

dt
� 2

K
N

NX
n�1

sin�fnj�J0�jznjj� , (3)

dzj

dt
� 2zj 2

K
N

NX
n�1

znj
J1�jznjj�
jznjj

cos�fnj� , (4)

where znj � zj 2 zn�t 2 tD� exp�2iVtD�, fnj �
fn�t 2 tD� 2 fj 2 vtD , and Jn�x� are Bessel func-
tions of the first kind. Equations (3) and (4) allow a
description of the array dynamics both in the cw and
self-pulsing regimes.

Substituting rj � znj � 0 into Eq. (3) produces
coupled delayed Kuramoto phase equations [4,11] for
the optical phases fj. These equations, which were
studied in [4], can be used to describe the SCL array
dynamics below the self-pulsing threshold. We note that
the so-called “frustration parameter” in [4] is now vtD

and is therefore delay dependent. In the cw in-phase state,
fj � f � Dvt, where Dv � K sin�vtD 1 DvtD�.
The multiple solutions of this equation correspond to the
external cavity modes [10]. From a linear stability analy-
sis, it follows that the cw in-phased state is stable if p�2 2

KtD , vtD 2 2pn , 3p�2 1 KtD with integer n.
For the antiphase cw operation, stability requires 2p�2 1
3810
KtD�2 , vtD 2 2np , p�2 2 KtD�2. This is in
agreement with the results obtained in [4]. In these
two stability conditions, the time delay appears in two
well-separated time scales: tD and vtD . Moving the
external mirror by one wavelength changes vtD by 4p

while tD changes negligibly. Hence, these states are
bistable over a range of the order of KtD�2 for constant
coupling strength and variable vtD . Furthermore, if
2KtD . p, stable in-phase operation is possible for any
value of vtD . This is due to the overlap of the stability
domains of two successive external cavity modes Dv.
In this way, the increase of the time delay favors stable
in-phase cw operation of the laser array. However, in the
presence of noise, hopping may occur between bistable
in-phase and antiphase regimes.

As the coupling strength h is increased, the in-phase
cw state of (1) and (2) can undergo two Hopf bifurcations
leading to undamped oscillations at a frequency close to V.
One bifurcation point is at K � KH1 � 22�cos�vtD 1

DvtD�. It is �N 2 1�-fold degenerate and gives rise to
antiphase self-pulsing. The emerging solutions correspond
to steady state solutions of (3) and (4) and can be writ-
ten near the bifurcation point as fj � f � Dvt, zj �
r exp�2ijkp�N�. The other Hopf bifurcation, which is
nondegenerate, leads to in-phase self-pulsing. It is charac-
terized by fj � f � Dvt, zj � r exp�iDVt� and takes
place at K � KH2 with

KH2 �
KH1

1 2 cos�VtD 1 DVtD�
, (5)

DV � cot��VtD 1 DVtD��2� . (6)

Equation (6) possesses multiple solutions, each produc-
ing a distinct relaxation frequency. The expression for
KH2 given by (5) coincides with the known result for
a solitary SCL with optical feedback [15] in the limit
a ¿ 1. As a function of the feedback delay, the criti-
cal normalized coupling strengths KH2 and KH1 have min-
ima. This occurs for cos�ntD 1 DntD� � 21, where n

can be either v or V. However, if tD ø �2gP�21�2, then
cos�VtD 1 DVtD� � 1 and KH2 diverges. Such a re-
striction on the magnitude of the delay does not exist for
KH1, provided that tD is larger than a few optical peri-
ods. Thus, while the antiphase instability exists for very
small delays, the in-phase instability requires a relatively
large delay. In practice, this requirement is met if the ex-
ternal mirror is placed at a distance equal to or greater
than L � 0.5c�tptc�1�2 � 1 cm, where c is the speed of
light. If this condition is fulfilled, the relative position
of the two Hopf bifurcations KH1 and KH2 can be con-
trolled by the position of the feedback mirror: KH2 , KH1
if cos�VtD 1 DVtD� , 0. In this case the in-phase cw
regime is destabilized via the nondegenerate Hopf bifurca-
tion at K � KH2 leading to in-phase self-pulsing solution.
If the emerging periodic solution is stable the in-phase syn-
chronization is maintained.
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In the framework of the generalized Kuramoto equa-
tions (3) and (4) the stability of the in-phase periodic
solution bifurcating at KH2 can be studied analytically.
Because this solution lies in the synchronization manifold
	 rj � r, uj � u, fj � f
, Eqs. (3) and (4) reduce
to the single laser problem. The amplitude of the
in-phase solution bifurcating at KH2 is thus determined
by [14,16]: K � 2r̃���1 2 cosw� cos�c�J1�r̃��, where
w � VtD 1 DVtD , r̃ � 2r sin�w�2�, c � vtD 1

DvH2 3 tD , and the transcendental equation for the
optical frequency shift DvH2 is now r̃ dependent. Lin-
earization of Eqs. (3) and (4) around this solution yields
stability conditions for perturbations transverse to the
synchronization manifold. If KH2 , KH1, the in-phase
branch of periodic solutions is stable in the vicinity of
the self-pulsing threshold. It is, however, destabilized at
a second threshold Kf. The condition K � Kf defines
a �N 2 1�-fold degenerate steady state bifurcation of (3)
and (4) which is a secondary bifurcation of the in-phase
periodic solutions for (1) and (2). This bifurcation leads to
a gradual desynchronization of the optical phases fj. On
the contrary, if KH2 . KH1, the cw regime is already un-
stable at the Hopf bifurcation K � KH2 and the in-phase
periodic solution emerging from this point is also unstable.
However, the laser array can be stabilized in the in-phase
state through a �N 2 1�-fold degenerate Hopf bifurcation
of (3) and (4) at K � Ku . It corresponds to a degenerate
secondary Hopf bifurcation in the original laser equations
by which the relaxation phases uj desynchronize. By
further increasing K , the laser array again loses in-phase
synchronization at K � Kf . Ku (see Fig. 1). It is
seen in Fig. 1 that in this case in-phase and antiphase
self-pulsing can coexist.

Unlike the Hopf bifurcation at K � KH2 which
gives rise to a single periodic solution, the degenerate
bifurcation at K � KH1 produces multiple antiphase
periodic solutions [17]. The stability properties of these
solutions require separate consideration. In this Letter,
we present only numerical results. If KH1 , KH2,
antiphase states of the type un 2 uj � 2�n 2 j�kp�N
are observed near the self-pulsing threshold KH1. Most
often the array splits up into two equally populated
self-pulsing clusters. In each cluster, the SCL are in
phase while the intensities of SCL in different clusters
oscillate with a relaxation phase shift equal to p . If
the number of lasers is odd, the laser that does not
belong to either clusters is cw. Such a behavior is de-
scribed by Eqs. (3) and (4), with z1 � 0, zj.1 � �21�jz,
fj.1 � DvH1 3 t, and f1 � DvH1 3 t 2 df,
where DvH1 and df are determined self-consistently.
This solution emerges at K � KH1 together with the
other antiphase self-pulsing solutions (see Fig. 1). In
the absence of local coupling, the initial conditions
determine which laser is cw. This results from the
symmetry of (1) and (2) with respect to permutations
of the laser indices. If this permutation symmetry is
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FIG. 1. Numerical bifurcation diagram computed for Eqs. (1)
and (2) with N � 5, a � 5, g � 0.001, P � 1.5, vtD 2
2np � 3.0, and tD � 91.7. This corresponds to VtD � 5.02
and tD � 0.18. Solid lines: numerical results. Dotted lines:
analytical results computed from Eqs. (3) and (4). CW, stable
cw in-phase state; I-P: in-phase self-pulsing; A-P, antiphase
self-pulsing where one laser is cw. The cw solution is desta-
bilized by a degenerate Hopf bifurcation at hH1 resulting in a
decrease in the average total field. The threshold h1 (h2) cor-
responds to Kf (Ku).

broken, the position of the cw laser can be determined by
the boundary conditions independently of the initial state.
In particular, we perturbed Eq. (1) with a small nearest-
neighbor coupling term ix�Ej21 1 Ej11� with
j � 1, . . . , N and E0 � EN11 � 0. We found that
the central laser emits cw and that each cluster is entirely
located on each side of the central laser. In this case the
cw laser can be regarded as a discrete domain wall in
which a sudden relaxation phase jump of p occurs.

If L is increased to 0.5ctc � 30 cm, tD becomes O �1�.
This changes qualitatively the array dynamics. The solu-
tions to (6) become more and more closely spaced. For
tD . p�2, there is at least one relaxation frequency such
that KH2�DV� , KH1. Hence, in this case the instabil-
ity of the in-phase cw regime always leads to in-phase
self-pulsing. Furthermore, a new secondary Hopf bifur-
cation appears within the synchronization manifold, above
which the SCL intensities become in-phase quasiperiodic.
According to the numerical simulations [18] of Eqs. (1)
and (2) with delays tD � O �1�, this in-phase secondary
bifurcation always precedes the desynchronizing one at
K � Kf. The in-phase synchronization is thus maintained
by the new instability within the synchronization manifold.
Further increase of the coupling parameter gives rise to
synchronized chaotic intensities (see Fig. 2).

In conclusion, we have derived a generalized set of
Kuramoto phase equations (3) and (4) to study an array
3811
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FIG. 2. Same parameter values as Fig. 1 but with N � 4 and
tD � 917.06, corresponding to VtD � 50.23 and tD � 1.83.
In cw, self-pulsing, quasiperiodic, and chaotic regimes, only
in-phase synchronization is observed.

of globally coupled semiconductor lasers. This allows
one to discuss analytically the dynamics below and above
the self-pulsing threshold. Above this threshold, the
self-pulsing elements of the array can be synchronized
in phase by properly tuning the time delay on three dif-
ferent time scales tD , VtD , and vtD simultaneously. To
increase tD favors in-phase synchronization by increasing
the stability domain of the existing solutions as well as
by producing new branches of nonstationary in-phase
solutions via in-phase instabilities. This process leads
eventually to synchronized chaos. If the external cavity
length L is such that tD ø 1, VtD and vtD must be
close to a resonance for the in-phase Hopf bifurcation
to exist and to be the first instability �KH2 , KH1�. If,
however, KH1 , KH2, in-phase self-pulsing may still
appear but for larger coupling strength. In this case this
in-phase self-pulsing regime is bistable with antiphase
regimes emerging at KH1. It loses stability again for
larger coupling strength. Among the types of antiphase
synchronization that can be observed if KH1 , KH2, we
have described a particular state characterized by the
extinction of sustained relaxation oscillations of a single
laser in the array. Taking into account additional near-
est-neighbor coupling that may arise from the proximity
of the SCL, such a state would be a discrete domain
wall in the laser array. Finally, we checked numeri-
cally that the synchronization properties reported in this
Letter persist in an array of slightly nonidentical SCL with
a weak nearest-neighbor coupling and a slightly asymmet-
ric global coupling in (1): 0 , jdnjj , 0.1. For example,
3812
with h � 1023, x � 1024, variations da � 1021

around a, and dP � 1023 around P, both in-phase syn-
chronization and local extinction of self-pulsing are still
observed. The essential dynamics is, therefore, captured
by the consideration of identical elements as with the
Kuramoto model with delay [4].
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