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Quantum Limits on Optical Resolution

Mikhail I. Kolobov1,2 and Claude Fabre2

1Fachbereich Physik, Universität-GH Essen, D-45117 Essen, Germany
2Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Case 74, F-75252 Paris cedex 05, France

(Received 18 May 2000)

We discuss the ultimate limit imposed by quantum fluctuations of light for resolution of fine details in
optical images. For this purpose, we extend in the quantum domain the classical analysis of the object
reconstruction, or superresolution, in terms of prolate spheroidal function basis. We derive the expression
for ultimate resolution limit in the reconstructed object using an illumination of the full object plane by
a multimode squeezed vacuum. We show that the gain in resolution using multimode squeezed light is
maximum when the Shannon number of the imaging system is close to unity.

PACS numbers: 42.50.Dv, 42.30.Wb, 42.50.Lc
Spatial behavior of nonclassical light, “quantum struc-
tures,” and “quantum images” are presently the subject of
active research [1,2]. This latest development in quantum
optics casts a new light on such a well-known problem
from classical optics as the ultimate limit of resolution in
optical systems. A classical and well-known criterion of
resolution was formulated at the end of the last century by
Abbe and Rayleigh, and states that the optical resolution
is limited by diffraction of the system pupil [3]. How-
ever, it is recognized now that modern photodetector ar-
rays and CCD cameras allow us to determine the position
and the displacement of a microscopic object with a pre-
cision much higher than the diffraction limit. Techniques
for measuring displacement in the nanometer range have
been successfully employed to detect deflection of glass
fibers [4–6], microscopic phase objects [7], movement of
biological, subcellular vesicles [8], measurement of ultra-
weak absorption using the mirage effect [9], or in atomic
force microscopy [10]. All these measurements have a sen-
sitivity which is ultimately limited not by diffraction but
by the quantum fluctuations of the light beam used in the
experiment. In a recent paper [11] it was shown that the
use of multimode squeezed light could significantly im-
prove the resolution beyond the standard quantum limit in
a displacement measurement.

In this Letter we go one step further than the simple de-
tection of position or displacement, and discuss quantum
limits of resolution for restoring arbitrary details of an ob-
ject in a diffraction-limited optical system. For simplicity
we will consider a one-dimensional case.

The scheme of diffraction-limited coherent optical
imaging is shown in Fig. 1. An object of finite size X is
placed in the object plane y. The first lens L1 performs
the Fourier transform of this object into the Fourier plane
j where a pupil of size d is located. The second lens
L2 performs the inverse Fourier transform and creates an
image in the image plane x. The finite size of the pupil
introduces a finite bandwidth in the transmission of the
spatial frequencies by the system, so that the image is not
an exact copy of the object.
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The so-called “superresolution” techniques are able to
restore object details beyond the Rayleigh limit [12–15]
or equivalently to recover the object spectrum outside the
band of the system. In the case of an object of finite size
X (see Fig. 1), its Fourier transform in the pupil plane is
an entire analytic function, and analytic continuation of the
object spectrum outside the spatial-frequency band allows
in principle for unlimited resolution. However, such a pre-
cise reconstruction of the object is obviously extremely
sensitive to the noise in the detected image. The ulti-
mate limit of superresolution is therefore determined by
the quantum fluctuations of light in the image plane.

Let us introduce dimensionless variables s �
2x�X, s0 � 2y�X, and the space-bandwidth product
c � pdX

2lf . In terms of these variables the transformation
L of the classical object amplitude a�s0� into the image
amplitude e�s� reads

e�s� � �La� �s�

�
Z 1

21

sin�c�s 2 s0��
p�s 2 s0�

a�s0� ds0, 2` , s , ` .

(1)

FIG. 1. Schematic of one-dimensional diffraction-limited co-
herent optical imaging.
© 2000 The American Physical Society 3789



VOLUME 85, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 OCTOBER 2000
The problem of reconstruction of the object a�s0� from a
detected image e�s� in the absence of noise is equivalent
to inversion of the integral operator L. The operator L�

adjoint to L is given by [14]

�L�f� �s0� �
Z `

2`

sin�c�s0 2 s��
p�s0 2 s�

f�s� ds, js0j # 1 .

(2)

The product A � L�L is the self-adjoint operator,

�Af� �s� �
Z 1

21

sin�c�s 2 s0��
p�s 2 s0�

f�s0� ds0, jsj, js0j # 1 ,

(3)

studied by Slepian and Pollak [16]. The orthonormal sys-
tem of eigenfunctions of A is given by

wk�s0� �
1

p
lk

ck�s0�, js0j # 1 , (4)

where ck�s� are the prolate spheroidal functions [16,17],
and lk are the corresponding eigenvalues. The functions
wk�s� form a basis in L2�21, 1� and may be considered
as “elements of information” of the input object. The
eigenvalues lk are an infinite set of real, positive numbers
obeying 1 $ l0 . l1 . · · · . 0. For small k the lk fall
off slowly with k until the index reaches the critical value,
k � S, called the Shannon number,

S �
2c
p

�
dX
lf

, (5)

beyond which the lk rapidly approach zero.
Using the fundamental properties of the prolate spheroi-

dal wave functions,
Z 1

21

sin�c�s 2 s0��
p�s 2 s0�

ck�s0� ds0 � lkck�s� ,

Z `

2`

sin�c�s 2 s0��
p�s 2 s0�

ck�s0� ds0 � ck�s� ,
(6)

we obtain

Lwk �
p

lk ck , L�ck �
p

lk wk . (7)

Note that the functions ck�s� are defined on the real axis
2` , s , `, and the functions wk�s0� on the interval
21 # s0 # 1. Expanding the object amplitude over the
functions wk�s0� and the image amplitude over ck�s�, we
can easily find the relation between the expansion coeffi-
cients of the object and the image. Indeed, since the func-
tions wk�s0� form a complete orthonormal set in �21, 1�
we can write the object amplitude as

a�s0� �
X̀
k�0

akwk�s0�, js0j # 1 , (8)

with the coefficients ak given by
3790
ak �
Z 1

21
a�s0�wk�s0� ds0. (9)

A similar expansion can be written for the image amplitude
in terms of functions ck�s�,

e�s� �
X̀
k�0

ekck�s�, 2` , s , ` . (10)

Substituting these expansions into Eq. (1) and using the
first of Eqs. (7) we obtain the following relation between
ak and ek :

ek �
p

lk ak . (11)

Let us denote by ãk the expansion coefficients of the
object reconstructed from the measured image e�s�. In the
absence of noise these coefficients are obtained by dividing
the image coefficients ek by

p
lk . Thus, for a noise-free

image the object reconstruction can be performed exactly,
ãk � ak , i.e., without resolution limit. The ultimate ac-
curacy in the determination of ãk will therefore be deter-
mined by quantum fluctuations in the measurement of ek .

In the quantum theory the object amplitude a�s0� and the
image amplitude e�s� become operators obeying the stan-
dard commutation relations (see, for example, Ref. [1]).
We can use Eqs. (8) and (10) now, treating the expansion
coefficients ak and ek as photon annihilation operators.
The operators ak in the object plane obey the following
commutation relations:

�ak , a
y
l � � dkl, �ak , al� � 0 . (12)

The same commutation relations must be satisfied by the
image coefficients ek . However, Eq. (11) does not preserve
the commutation relations (12). The reason for this is that
the classical imaging equation (1) takes into account only
nonzero field amplitude in the region js0j # 1 of the object
plane. The rest of this plane js0j . 1 is ignored because
there the classical field amplitude is zero. In the quantum
theory this region must be taken into account to guarantee
the conservation of the commutation relations.

To include the region js0j . 1 in the object plane into
the theory we introduce another set of functions:

xk�s0� �
1

p
1 2 lk

ck�s0�, js0j . 1 . (13)

Using the following properties of the prolate spheroidal
wave functions,

Z `

2`
ck�s�cl�s� ds � dkl ,

Z 1

21
ck�s�cl�s� ds � lkdkl ,

(14)

it is easy to show that functions xk�s0� form a complete
orthonormal set in the region js0j . 1. Therefore, we can
use them as a basis for expansion of the field outside the
object.
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Now the operator of the total field in the object plane,
2` , s0 , `, can be written as

a�s0� �
X̀
k�0

akwk�s0� 1
X̀
k�0

bkxk�s0� , (15)

where the operators bk satisfy the commutation relations
similar to Eq. (12). Substituting the expansion (15) into
Eq. (1) we obtain the following relation between the coef-
ficients in the object and the image plane,

ek �
p

lk ak 1
p

1 2 lk bk . (16)

It is easy to verify that this transformation pre-
serves the commutation relations of the operators,
�ak , a

y
l � � �bk , b

y
l � � �ek , e

y
l � � dkl.

Equation (16) is completely equivalent to the trans-
formation performed by a beam splitter. Indeed, if we
consider the operators ak and bk as the photon annihila-
tion operators in the modes defined by prolate spheroidal
waves incoming to the beam splitter with the amplitude
transmission coefficient

p
lk and the reflection coefficientp

1 2 lk , then ek is the photon annihilation operator in
the kth mode of the transmitted wave.

From Fig. 1 one may think that the vacuum fluctuations
coming from the region jjj . d�2 in the Fourier plane
outside the pupil should also be taken into account. Indeed,
when treating the field in the Fourier plane as an operator
we must include the contribution from this region into the
resulting field in the image plane. However, the advantage
of expansion (10) is that the field from this region does not
contribute to the expansion coefficients ek of the image
because it is orthogonal to the prolate spheroidal wave
functions. This property was pointed out by Bertero and
Pike in [14] for the out-of-band classical noise and remains
valid in the quantum theory, as we will prove elsewhere.

We will assume that we use a homodyne detection tech-
nique of the image that allows us to register any of the
quadrature components of the field e�s�,

e�s� � e1�s� 1 ie2�s� . (17)

Using Eq. (10) we can express the variances of the ex-
pansion coefficients e1k and e2k of these quadrature com-
ponents through the variances of coefficients a1k , a2k and
b1k , b2k in the object plane,

��Demk�2� � lk��Damk�2� 1 �1 2 lk� ��Dbmk�2� ,

(18)

with m � 1, 2 for corresponding quadratures. The fluc-
tuations of the expansion coefficients of the reconstructed
object are obtained as follows:

��Dãmk�2� �
��Demk�2�

lk
. (19)
Let us assume that the field in the object plane is in
a multimode coherent state at any point js0j # 1. Since
there is no light outside the region �21, 1�, this corresponds
to the vacuum state of all operators bk . In this case the
variances of the coefficients amk and bmk in the object
plane are equal to ��Damk�2� � ��Dbmk�2� �

1
4 , and the

variances of the coefficients for the reconstructed object
read

��Dãmk�2� �
1

4lk
. (20)

As the eigenvalues lk become rapidly very small for
k . S, the corresponding variance will become very large
which will forbid a precise determination of the coefficient
ãmk . Therefore, formula (20) sets the standard quantum
limit in reconstruction techniques used in superresolution.

Since imaging an equation in the form (16) is equiva-
lent to the transformation of two fields by a beam split-
ter it gives us an idea of how to reduce the fluctuations
in the reconstructed object below the standard quantum
limit. It is well known that such an improvement can be
achieved by illuminating the open port of the beam split-
ter by a squeezed vacuum with properly chosen squeezed
quadrature. Since in our case the role of such an open
port is played by the region js0j . 1 outside the object,
we expect that superresolution beyond the standard quan-
tum limit can be achieved by illuminating this region by a
multimode squeezed vacuum with a light spot much larger
than the size of the object. Such a light can be produced
by a traveling-wave optical parametric amplifier or a de-
generate optical parametric oscillator below threshold in a
confocal cavity [1].

We may expect that an even better result for the object
reconstruction can be obtained when not only the area
outside the object but the object itself is illuminated by
multimode squeezed light with nonzero mean amplitude.
However, to use the advantage of such illumination we
have to make sure that squeezing in the incoming light
is not destroyed by absorption in the object. Therefore,
squeezed light illumination should be advantageous for
pure phase or for weakly absorbing objects.

In practice, one can use a single source of multimode
squeezed vacuum with a large transverse area and mix it
with a coherent light wave in the central part, illuminat-
ing the object using a weakly reflecting small size mirror.
To evaluate the fluctuations of the reconstructed object in
this case we assume for the sake of simplicity that squeez-
ing has infinitely large spatial bandwidth, i.e., is the same
for all coefficients ak and bk , ��Damk�2� � ��Dbmk�2� �
1
4e62r , where the “2” sign corresponds to the squeezed
quadrature m � 1, and the “1” sign to the stretched one,
m � 2, and r is the squeezing parameter. This gives

��Dãmk�2� �
1

4lk
e62r . (21)
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It follows from this equation that the variance of the re-
construction coefficients in the squeezed quadrature com-
ponent ã1 can be significantly reduced below the standard
quantum limit for large squeezing, r ¿ 1. For r � 0 we
recover the standard quantum limit of Eq. (20).

To estimate the resolution length D (the smallest object
detail reconstructed from the image) from Eq. (20) and
its improvement obtained using Eq. (21) we will use the
arguments similar to Ref. [14]. For definiteness we shall
consider an amplitude object. Let us define the signal S
and the noise B related to the reconstructed object as

S �
Z 1

21
�ã1�s0�ã1�s0�� ds0, B �

Z 1

21
����Dã1�s0����2� ds0.

(22)

These quantities can be evaluated as S � �N�, where �N�
is the total number of photons in the object, and

B 	
e22r

4

QX
k�0

1
lk

	
e22r

4
1

lQ
. (23)

Here Q is the index of the highest eigenfunction in the
reconstructed object. In the second equality we have used
the fact that lQ is the smallest eigenvalue and estimated
the sum as 1�lQ . Setting the signal-to-noise ratio equal to
unity we can find the smallest eigenvalue lQ that can be
recovered from the image measurement,

lQ 	
e22r

4�N�
. (24)

Using the tables of eigenvalues lk [17] or calculating them
numerically we can evaluate the index Q of the highest
eigenfunction wQ�s� with a precisely known coefficient in
the expansion of the reconstructed object. Knowing that
wQ�s� has exactly Q zeros on the interval �21, 1� we can
estimate the resolution length D as

D 	 X��Q 1 1� � R

µ
S

Q 1 1

∂
, (25)

where R � X�S � lf�d is the Rayleigh resolution
length. From this equation we can interpret the number
Q 1 1 � M as an effective number of degrees of free-
dom in the object which, as follows from Eq. (24), is a
function of the total photon number �N� and the squeezing
parameter r . The case of superresolution corresponds
to D , R or, equivalently, M . S. For classical noise
the dependence of M on the classical signal-to-noise
ratio was studied in [14,15] with an important conclusion
that significant superresolution can be achieved for small
3792
values of the Shannon number S. Since our Eq. (24) is an
extension to the quantum domain of analogous equation
studied in Refs. [14,15] we conclude that a similar result
holds true for quantum fluctuations.

A scanning optical microscope is operated in a small
Shannon number configuration [18]. It is therefore a good
candidate for a practical application of our analysis. We
will consider it in more detail in a forthcoming paper to-
gether with the influence of the finite pixel size in the image
plane and the finite coherence area of squeezed light in the
object plane.
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