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Channel Mixing Effects in the Dissociative Recombination of H1
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We discuss the low-energy dissociative recombination of H1
3 , which strongly influences the abundance

of this ion in diffuse interstellar molecular clouds. The kinetic couplings between the ionization contin-
uum and the dissociative ground state of H3 have been used as input to a two-dimensional wave packet
calculation of dissociation dynamics. The cross section obtained for direct dissociative recombination is
much smaller than the latest experimental results. However, a multichannel quantum defect treatment
shows that an indirect mechanism via bound Rydberg states of H3 prevails for this process.

PACS numbers: 34.80.Ht, 98.38.Am
The chemistry of the H1
3 molecular ion, a generous

proton donor, is of central interest for the kinetics and
the composition of many ionized media, in particular, the
cold interstellar clouds of molecules [1,2]. The reaction of
dissociative recombination (DR),

e2 1 H1
3 ! �H 1 H2, H 1 H 1 H� , (1)

is the dominant destruction process for this ion in diffuse
interstellar clouds with high electron densities [2]. Most
experiments using either electron-ion merged beam [3,4]
or flowing afterglow [5,6] techniques agree within 1 order
of magnitude on a relatively fast process at low electron
energy.

The lowest dissociative excited states of H3 [7,8]
occur at about 9 eV above the ground state of the ion at the
equilibrium geometry. Their contribution to DR has been
evaluated [8,9] and found in good agreement with the
experimental values for electron incident energies in the
range 5–12 eV, both for H1

3 and D1
3 [4]. However, these

states dissociate at 0.974 eV above the lowest vibrational
level of the ion ground state. Consequently, they cannot
play the role of dissociation paths in the low-energy DR
of fully relaxed ions, which can dissociate only through
the ground surface of H3. However, contrary to the
high-energy region, the H3 ground state is not coupled to
the ionization continuum by Rydberg-valence interactions.
Therefore, the relatively high DR thermal rates measured
in the majority of experiments have been considered as an
enigma.

Some years ago, the study of HeH1 DR [10,11] clearly
proved that nonadiabatic interactions can also induce rea-
sonably high thermal DR rates. Since then, considerable
effort has been made to estimate the strength of such in-
teractions in the case of H1

3 DR. The main part of the
nonadiabatic coupling between the ground state of H3
and an ionization continuum (H1

3 1 e2) is expressed by
the operator
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where Jacobi coordinates (r , R, u) are used, with r being
the distance between two H atoms and R the distance be-
tween the third H and the midpoint of the line connecting
the other two. The wave functions Cc and Cgd correspond
to (H1

3 1 e2) and H3 electronic states, respectively, mr

and mR are the reduced masses associated with the in-
ternuclear motion along r and R, respectively, I is the
momentum of inertia, and the matrix elements represent
integration over electronic coordinates only. The nonadi-
abatic “bound-free” matrix elements —i.e., the bra-kets in
Eq. (2)— are (almost) independent of the energy of the in-
cident electron and can be related to their “bound-bound”
precursors, using the scaling law (in a.u.) [12]:

�Ccj
≠

≠X
jCgd� � �Cn

Ryj
≠

≠X
jCgd�

3 �n 2 m�r , R, u��3	2, (3)

where X stands for r , R, or u, C
n
Ry is the electronic wave

function of an H3 Rydberg state of principal quantum
number n, and m�r , R, u� is the quantum defect of the
corresponding Rydberg series. We have evaluated the
nonadiabatic matrix elements appearing on the right-hand
side of Eq. (3) for 2s, 3s, 4s 2A0

1, and 3p 2E0 states
and estimated their predissociation rates using a time-
dependent wave-packet approach [13]. In spite of severe
approximations — first order treatment, restriction to C2y

geometry (u � 90±), and harmonic oscillator modeling
of the H1

3 vibration — the results were in satisfactory
agreement with the spectroscopic measurements [14]. On
the other hand, the use of the scaling law (3) in Eq. (2)
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allowed us to estimate the strength of the bound-free
nonadiabatic interactions, necessary for the quantitative
study of the H1

3 DR.
Indeed, these couplings are responsible for the so-called

direct DR process, which consists in the capture of the inci-
dent electron into the dissociative state, leading to dissocia-
tion in competition with autoionization. Our preliminary
calculation was restricted to this direct mechanism, and,
in addition, autoionization was neglected. We have used
a time-dependent wave-packet approach [13], which relies
on the direct integration of the time-dependent Schrödinger
equation associated to the dissociative surface Ud�r , R�
of interest:

ih̄
≠

≠t
C�r, R; t� � �T�r , R� 1 Ud�r, R��C�r , R; t� (4)

with the initial condition

C�r , R; t � 0� � V�r , R�xy1y2 �r , R� . (5)

Here T�r , R� is the nuclear kinetic energy operator, and
the initial wave packet is given by the action of the
nonadiabatic coupling operator [Eq. (2), with u depen-
dence omitted] on the vibrational eigenfunction of the tar-
get ion in the symmetric stretch y1 and bending normal y2
modes, xy1y2 .

The cross section for the DR of an H1
3 ion in the (y1y2)

level of energy E1
y1y2

, with an electron of energy ´ is given
(in a.u.) by

sy1y2 �
p3

´
gSy1y2�E� , (6)

where g is the multiplicity ratio of the neutral and ion
states, E � E1

y1y2
1 ´ is the total energy of the H3 sys-

tem, and Sy1y2 �E� is the Fourier transform of the overlap
between the propagated and initial wave function [15]:

Sy1y2 �E� �
Z `

2`
eiEt	 h̄�C�r , R; t � 0� jC�r , R; t�� dt .

(7)

Using the technique described above, we have evaluated
[9] the contribution of three ionization continua (s 2A1,
pz

2A1, and p 2B2) to the DR cross section of H1
3 and D1

3
in their ground state [�y1, y2� � �0, 0�]. Although, within
the same wave-packet approach, our predissociation rates
estimated for some Rydberg states agree well with the
measurements [13,14], the DR computed cross sections
are 4–5 orders of magnitude below the experimental data
measured in storage rings [4].

This result, concerning exclusively the direct mecha-
nism, is not surprising: the position of the neutral disso-
ciative state with respect to the molecular ion surface [7]
corresponds to a very low Franck-Condon factor with the
ground vibrational state of the ion. However, if H1

3 is vi-
brationally excited, the spread of the wave function results
in much larger Franck-Condon factors. For example, the
3786
cross section increases by almost 2 orders of magnitude
when the ion is in its fourth vibrational level in the sym-
metric stretch mode, �y1, y2� � �3, 0�.

The excited levels are certainly not populated, neither
in cold interstellar clouds nor in storage rings, but they
can play a very important role in the DR process via
the indirect mechanism [9,10]. This mechanism consists
in temporary capture into bound Rydberg states, subse-
quently predissociated, and is possible if some of the ex-
cited vibrational levels of the molecular ion are situated
above the total energy of the recombining system: with
respect to these levels, the incident electron is “bound,”
although it is “free” with respect to the initial level of the
target. Our time-dependent method proceeds presently by
the propagation of the wave packet on a single dissociative
surface. We can add one or more surfaces, corresponding
to bound Rydberg states, and simultaneously propagate on
them our wave packet, but the number of such Rydberg
states necessary to achieve convergence could be prohibi-
tively large. So far, another method [16], based on the
multichannel quantum defect theory (MQDT), can handle
the indirect process, but applying it to the dissociation of
polyatomic systems is a difficult task. Indeed, the basic
element of the MQDT approach is the strength of the cou-
pling zy1y2�E� of the channel (e2 1 H1

3 �y1y2�) with the
dissociative continuum, given by

z 2
y1y2

�E� �
X
b

j�xy1y2 �r , R� jV�r , R�jFdb�E; r , R��j2 (8)

where Fdb�E; r , R� is the scattering function associated
with the potential surface Ud�r , R� and the asymptotic limit
b. This latter index labels the dissociation products in their
different levels of internal energy. Whereas for the recom-
bination of a diatomic ion only one asymptotic condition
is available for the nuclear wave function — and the sum
in Eq. (8) reduces to one single term—the DR of H1

3 can
result either in an H atom and an H2 molecule in different
vibrational levels or in H 1 H 1 H, which can be re-
garded as an H atom and an H2 molecule in its vibrational
continuum. For each asymptotic limit b, one has to solve
the two-dimensional Schrödinger equation for the nuclear
motion. Hence, the MQDT procedure would require an
enormous computational effort.

To solve this methodological dilemma, we have elabo-
rated a “hybrid” method, which combines the advantages
of each of the two treatments. The MQDT-type approach
can be linked to the wave-packet one by equating the
right-hand side of Eq. (6) with the MQDT formula of the
direct DR cross section [16], which when autoionization
is neglected, is proportional to the square of the coupling
strength involved in Eq. (8). We then get

zy1y2 �E� � �Sy1y2�E��1	2 (9)

which allows us to estimate zy1y2�E� using the result of
a wave-packet propagation, rather than dealing with the
difficult evaluation of the numerous terms involving the
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scattering functions Fdb from Eq. (8). In fact, in the case
of the direct DR, zy1y2�E� expresses the strength of the
coupling between the “effective” dissociative state of
electronic energy Ud�r, R�—disregarding the different
possible dissociation limits — and the entrance channel.

When an H1
3 ion in its ground vibrational level recom-

bines with an electron of energy less than the first vibra-
tional excitation energy, all the ionization channels, except
the entrance one, are closed. The direct DR cross sec-
tion (neglecting autoionization) can be evaluated within the
wave-packet method, with �y1, y2� � �0, 0� in Eq. (5) and
performing the procedure described by Eqs. (4)–(7). As a
by-product of this procedure, we can estimate the strength
of the coupling between the entrance ionization channel
�y1, y2� � �0, 0� and the effective dissociative one by cal-
culating z00�E� from Eq. (8).

We can also perform another wave-packet propa-
gation, choosing as the source term in Eq. (5) the vi-
brational wave function corresponding to an excited
state �y0

1, y0
2� fi �0, 0�, and we can calculate the function

Sy
0
1y

0
2
�E� from Eqs. (7) and (8) at the same total energy E

as before. This describes the predissociation of a fictitious
Rydberg state, in an initial excited level (y0

1, y0
2) which

would have the same energy as the ion ground level. Since
the coupling operator V�r , R� is energy independent, the
corresponding zy

0
1y

0
2
�E� given by Eq. (8) is exactly the

strength of the coupling between the effective dissociation
channel and the closed ionization channel (y0

1, y0
2). By

such simulations corresponding to successive excited
vibrational states, we are able to evaluate the couplings of
all the closed ionization channels to the effective disso-
ciative one. We did this evaluation for the particular case
where the Rydberg manifold describing the (H1

3 1 e2)
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FIG. 1. The strengths of the nonadiabatic couplings of the
“effective” dissociation channel associated to the 2B2 electronic
ground state of H3, with the different H1

3 1 e2 channels. The
curves are labeled by the rank of the threshold in energy fol-
lowed by its vibrational quantum numbers (y1, y2).
system has the symmetry p 2B2 and the dissociation
channel is the upper sheet of the ground state, converging
asymptotically to the H 1 H 1 H limit. Some of the
couplings are plotted in Fig. 1, which shows an important
feature: the corresponding values are spread over almost
3 orders of magnitude, the values corresponding to the
entrance channel being at the bottom of the range. Note
from the curves in Fig. 1, which are labeled by their order
in energy, that the nonadiabatic coupling simply increases
with the energy. Indeed, since the ion potential surface
lies so far above the dissociative surface, the dominant
factor is the Franck-Condon overlap which scales with
energy. The relatively strong couplings of most of the
closed ionization channels to the dissociative one is an
indication of their possible role in the H1

3 DR process.
The representation relying on the effective dissociation

channel allows us to perform an MQDT-type modeling
of the DR process, including all the important mecha-
nisms, i.e., direct and indirect capture and autoionization.
The ionization channels, besides being coupled to the dis-
sociative state— as shown in Fig. 1— are also mutually
coupled by vibrational interaction, which is described by
the channel mixing coefficients �xy1y2 j cos�pm�r , R, u �
90±�� jxys0yb0 � and �xy1y2 j sin�pm�r , R, u � 90±�� jxys0yb0 �.
We have evaluated these quantities for the 2B2 symme-
try, starting from the quantum defect previously computed
[13]. We could thus estimate the contribution of this sym-
metry to the H1

3 DR cross section, both direct and total.
The result is shown in Fig. 2. Although the initial discrep-
ancy between theory and experiment is not yet removed,
the computed cross section increases by 2 orders of magni-
tude on the average when the indirect process is included.
This clearly demonstrates the decisive constructive role
of this mechanism in the case of the low-energy DR of
H1

3 . Qualitatively, a similar effect was also observed in
low-energy DR of HeH1 [10], but the relative importance
of the indirect process is by far more significant in the
H1

3 case.
A strong vibrational interaction between the ionization

channels is a necessary condition for the spectacular ef-
fect illustrated by Fig. 2. In fact, it is this interaction that
allows a contamination of the genuine weak coupling be-
tween the entrance and the dissociative exit channel by
the much stronger couplings involving the closed chan-
nels. To get better insight into this phenomenon, we have
artificially canceled the vibrational couplings, choosing a
constant value for the quantum defect. The result, dis-
played in Fig. 3(a), shows a dramatic change in the role of
the indirect mechanism: its contribution to the total pro-
cess consists in narrow destructive resonances, without any
quantitative effect with respect to the direct one.

On the other hand, we are able now to check the valid-
ity of an ingenious scenario proposed by Bates in his very
last DR study [17]. It is based on the so-called “propen-
sity rule,” stating that vibrational couplings are most effec-
tive between consecutive—Dy � 61—vibrational levels.
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FIG. 2. Dissociative recombination of H1
3 at low energy, mod-

eled within a combined MQDT	wave-packet approach (restric-
tion to the 2B2 symmetry). Dashed line: Direct cross section.
Solid narrow line: Total cross section. Circles: CRYRING
measurements [4]. Solid broad line: Total cross section, con-
voluted according to the anisotropic Maxwell distribution in the
storage ring [4].

According to this ansatz, the fast H1
3 DR should occur by a

sequence of (Dy1 � 1, Dy2 � 0) or (Dy1 � 0, Dy2 � 1)
transitions. By canceling artificially all the vibrational
coupling terms except those obeying the propensity rule,
we have obtained the results shown in Fig. 3(b). Clearly,
such a multistep scenario does make sense, but compari-
son with Fig. 2 also demonstrates the important role of
the vibrational couplings between ionization channels cor-
responding to more distant (jDy1j 1 jDy2j . 1) vibra-
tional levels.

The increase of the theoretical cross section caused by
the inclusion of the indirect process into the modeling is an
important step towards reconciling experiment and theory.
However, Fig. 2 still shows a gap of more than 2 orders
of magnitude between them. A partial explanation is that
our present calculation is restricted to the contribution of
the p 2B2 symmetry to the cross section, whereas at least
two further symmetries —s 2A1 and pz

2A1—should be ac-
counted for. Still, the main source of the persisting dis-
agreement is probably the restriction in our calculation
to two dimensions —u � 90±, i.e., C2y symmetry. The
Franck-Condon overlaps could change considerably when
passing from two to three dimensions (Cs symmetry) and
the corresponding change of couplings would alter the
computed DR cross section —direct and total. Moreover,
the actual vibrational structure in three dimensions is much
more dense than in the present calculations, where only
two vibrational modes were available, within a crude har-
monic oscillator approximation. Additional mechanisms,
such as the actual opening of the doubly excited states for
3788
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FIG. 3. Same as Fig. 2, with vibrational coupling artificially
canceled (a) or restricted to Dy � 61 (b) (see text). The con-
voluted results are missing in (a), since irrelevant.

low-energy DR through an efficient coupling to the ground
state, should also be carefully examined.
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