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Two-Body Random Ensembles: From Nuclear Spectra to Random Polynomials
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The two-body random ensemble for a many-body bosonic theory is mapped to a problem of random
polynomials on the unit interval. In this way one can understand the predominance of 01 ground states,
and analytic expressions can be derived for distributions of lowest eigenvalues, energy gaps, density of
states, and so forth. Recently studied nuclear spectroscopic properties are addressed.

PACS numbers: 21.60.Fw, 05.30.–d, 21.10.Re, 24.60.Lz
The origins of spectroscopic properties of nuclei have
received renewed attention recently in the context of
the two-body random ensembles [1–3]. These studies
provide an understanding of which nuclear properties
are robust, depending only on the model space (one- and
two-body interactions), and which depend on specific
strengths of interactions within the space. The 01 ground
state is an example of a robust feature. The starting point
for analyses of two-body random ensembles (TBREs)
are Hamiltonians of the form H �

P
k ´kc1

k ck 1P
ijkl yijkmc1

i c1
j ckcm, where c1

k , ck represent boson [4]
or fermion [5] creation�annihilation operators for a state
k, and the coefficients ´k , yijkm are taken as Gaussian
random variables once certain physical constraints are
imposed, such that H commutes with the generators
of total spin, isospin, and so forth. The important
distinction between the TBRE and the conventional
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Gaussian orthogonal ensemble (GOE) description of
many-body Hamiltonians is that the latter does not
include correlations between Hilbert subspaces of
different quantum numbers, which are essential to un-
derstanding ground state and low energy spectroscopic
properties of nuclei. Although studied for some time,
very little is known analytically about the bosonic
TBRE [1,4].

We consider a bosonic model which can be treated ana-
lytically, while retaining salient features of more complex
theories. The U�4� vibron model [6] consists of two type of
bosons, Jp � 01, 12, and is used to describe the rotations
and vibrations of diatomic molecules. In contrast to the
fermionic U�4� problem of particles in the j � 3�2 shell,
the Hilbert space of the bosonic theory can be arbitrarily
large. We will see that this model describes many recently
observed nuclear properties in the U�6� TBRE [1,3]. The
Hamiltonian is [6,7]
H �
1
N
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�N�N 2 1� , (1)
where s1�s� and p1
m �p̃m � 2p2m� are the spherical-

tensor creation (annihilation) operators for states with
Jp � 01 and 12 (projection m � 0, 61�, respectively.
The square brackets indicate angular momentum cou-
plings and dots indicate scalar products. Since the matrix
elements of the one- and two-body interactions are propor-
tional to N and N�N 2 1�, scaling allows all coefficients
to be Gaussian random numbers of unit variance. The
random Gaussian variables are grouped into a vector
x � �c0, c2, u0, u1, y0, es, ep�. The matrix elements of H
are well known in the vibrational basis jNnpJm�, where
N is the total number of bosons, np � 0, 1, . . . , N is the
number of Jp � 12 bosons, and J � np , np 2 2, . . . , 1
or 0 is the total angular momentum of the many-body
state (m � 2J, . . . , J is omitted since it adds a trivial
degeneracy.) We also note that even (odd) J states have
only even (odd) values of np , resulting in an odd/even
effect, depending on the choice of N . While this effect is
easily treated, we will focus only on even N to simplify
the presentation.
©

When the dimension of the Hilbert space is large, which
is typical of many-body problems, a common approach
to diagonalization is Lanczos’s method. Here successive
iterations of the Hamiltonian on an arbitrary trial wave
function C0 are performed to reduce the Hamiltonian to a
tridiagonal form. For a given spin J of an N-body state,
we label the basis by np � J , J 1 2, . . . , N 2 1 or N .
Clearly the dimension of the J � 0 Hilbert space is maxi-
mum, while that of J � N is minimum. While it has been
argued for some TBRE’s that the dimensionality or the
width of the lowest eigenvalue distribution is responsible
for the preponderance of 01 ground states, we will see that
this is not the origin here.

We choose the trial Lanczos state to be that with np �
J. By enumerating the states by an index k � �np 2 J��2,
the Hamiltonian (1) assumes the tridiagonal form HCk �
bkCk 1 ak21Ck21 1 ak11Ck11, where ak , bk are the
matrix elements of H in this basis. The study of tridiagonal
matrices is intimately linked to orthogonal polynomials
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and their recursion relations, where k might represent the
order of the polynomial [8]. In particular, the family of
recursively generated, real polynomials are related to the
characteristic polynomial Di�E� � det�Hi 2 E ? 1i� of
the i 3 i tridiagonal matrix Hi . Consequently the zeros
of the polynomials Di are related to the eigenvalues of Hi .
There are several theorems which have developed bounds
for the zeros of Di as well as expressions for the extreme
eigenvalues which we can use to derive properties of the
TBRE [8,9].

We consider two cases here: large N and N � 2. For
N � 2, the order of the interaction (two-body) is equal to
the number of particles, and we expect to recover the GOE.
The only allowed states are J � 0, 1, 2. The J � 1, 2
Hilbert spaces are one-dimensional, while J � 0 is 2D.
It can be readily checked that the density of J � 0 states
gives the Wigner semicircle (i.e., the 2 3 2 matrix can be
expressed as one with GOE measure), while the J � 1, 2
are always Gaussian. The same is true for J � Jmax � N
for any N , since the Hilbert space for the maximum spin
states is always one dimensional so that the density of
states is purely Gaussian [Fig. 1(b)].

In the following, we will use the large N limit (typi-
cally in molecules N � 100 [6,7], but N � 8 calcula-
tions already agree with our analytic predictions below).
We next define z � np�N and j � J�N and construct
the functions a�z, j�, b�z, j� from the analytic matrix ele-
ments of the tridiagonal matrix, b�z, j� � g1z2 1 g2z 1

g3,j , a�z, j� � g4z�1 2 z� 1 o�1�N�, where gk are lin-
ear combinations of the random coefficients x. a and b

FIG. 1. (a) Theoretical distribution (5) of extrema of f0�z�
(solid line) compared to numerical TBRE results (symbols).
(b) Theoretical eigenvalue distribution for highest spin states
pN �E� [solid line; Eq. (8)] are seen to be Gaussian and agree
with numerical results (symbols). This is also the level density
rN �E� of J � N states for any N . (In this and the following
figures, the vertical scale is arbitrary.)
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are the off-diagonal and diagonal matrix elements, respec-
tively. Then, in the large N limit, the lowest eigenvalue for
each spin has the form [8,10]

E
j
min � infz�fj�z��, fj�z� � b�z, j� 2 2ja�z, j�j .

(2)

In terms of the parameters of H in Eq. (1) and the matrix
elements of the interactions [6,7], we can express fj�z� �
az2 1 bz 1 dj , where z [ � j, 1� and
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p
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N 2 1
,

dj � r3 ? x � ´s 1 u0�2 1 j2�c2 2 c0��6 . (3)

To check this approach, consider only the off-diagonal in-
teractions �b � 0�. Then we expect for small J that the
minimum energy approaches E

j
min � 2jy0jN�4

p
6 �N 2

1�. The numerical value, denoted E
j
calc, can be seen to

converge to this result. For J � 0, 1, 2, E
j
calc�E

j
min �

1.06, 1.05, 1.03 for N � 20 and 1.01, 1.01, 1.01 for N �
80. Hence the desired spectral properties of H can be re-
cast in terms of random polynomials on the unit interval.
This should be generally true for any bosonic or fermionic
theory since the Lanczos approach can be applied to ei-
ther. The main effort is to determine whether there is any
approximate analytic behavior of the functions a, b, al-
though it is suggested to be generally true [10].

Many general properties of random or Kac polynomi-
als are known, but typically for higher order functions
which are otherwise unrestricted [11]. To understand the
properties of this TBRE, we first compute the distribu-
tion of coefficients. Since the variables x are taken as
Gaussian with measure P�x� ~ exp�2

P
k x2

k�2�, one
can compute the distribution of coefficients of the ran-
dom polynomial with P �a, b, dj� ~

R
dx P�x�d�a 2

r1 ? x�d�b 2 r2 ? x�d�dj 2 r3 ? x�. Integrating yields

P �a, b, dj� ~ exp�2 1
2 J

T M21J �, J � �a, b, dj� .
(4)

Here M21
ab � �2 detM�21eaabebcd�dikdjl 2 dijdkl� 3

ra,irb,jrc,krd,l is the inverse of Mab � ra ? rb , and ra,i
is the ith component of ra.

As in the U�6� model [1], the frequency of a ground
state 01 is approximately 70% (for even N: 70.5%, 71.7%,
72.3%, 72.5% for N � 8, 16, 32, 64, respectively). To un-
derstand this, we first compute where the minima z � z0
of f0�z� are located. Integrating the location of the minima
over the distribution of coefficients (4), we find the distri-
bution of minima to be:

P�z0� �
1

2p

q
r2

1 r2
2 2 �r1 ? r2�2

r2
1 z2

0 1 �r1 ? r2�z0 1 r2
2 �4

. (5)

In Fig. 1(a) we compare this function to results from 106

numerical diagonalization of Eq. (1) for N � 8, 16, 32,
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and 64 bosons. We estimate the frequency of 01 ground
states by first understanding where in z [ �0, 1� the min-
ima are located. For 50% of the cases, a , 0, so f0�z�
is an inverted parabola, and its minimum is at z � 0 or
1, each occurring with equal probability (25%). For the
remaining 50% of the cases, a . 0. For these cases, the
probability of having the minimum in z [ �0, 1� is

1
2

Z 1

0
P�z0� dz0 �

1
2p

tan21

2
642

q
r2

1 r2
2 2 �r1 ? r2�2

r2
2 1 2r1 ? r2

3
75 ,

(6)

which has a value of 22%, leaving 14% at z � 0 and 14%
at z � 1. Next we ask when the 01 state is a global
minimum (over all J). At z � 0, only 01 states are al-
lowed (since a state J . 0 has np $ J , hence z . 0).
Hence, for at least 39% of the cases, 01 is the ground state.
At z � 1, all even J are allowed, and, from (2) and (3),
E

j
min 2 E0

min � j2�c2 2 c0��6. Since c0, c2 are Gaussian
random numbers, half of the time 01 is the ground state
�E0

min , E
j
min�, and during the other half, is the state of

maximum j, or J � N . So, at z � 1, 19.5% of the ground
states are 01 and 19.5% are J � N . For z [ �0, 1�, we
note that J � 0 has even np and hence is only allowed at
half of the points. Consequently, of the 22% of the minima
here, no more than 11% can be 01 ground states. There-
fore we estimate a roughly 69.5% frequency of 01 ground
states, in very good agreement with observations.

Since it is more likely to find the minima of fj�z� on the
boundary than inside, we can compute distribution func-
tions of interest by restricting attention to the edges z � j
and z � 1. While this is approximate, it does yield pre-
dictions which agree very well with the molecular U�4�
and nuclear U�6� TBREs. Averaging infz� fj�z�� over
P�a, b, dj� yields the distribution of lowest eigenvalues,
denoted pJ�E�. These have the form

p0�E� ~ exp�2E2�2r2
3 � erfc�EA1�

1 A3 exp�2E2�2R2� erfc�EA2� , (7)

pJmax �E� ~ exp�2E2�2R2� , (8)

where R2 � �r1 1 r2 1 r3�2 � 1.07, A1 � �r1 ? r3 1

r2 ? r3���hr3� � 0.663, A2 � �R2 2 r1 ? r3 2 r2 ? r3��
hR � 0.632, A3 � hr3��R

p
2 detM � � 0.423, and h2 �

2�r2
3 �r2

1 1 2r1 ? r2 1 r2
2 � 2 �r1 ? r3 1 r2 ? r3�2� (evalu-

ated at N � 64). For other values of J, one can readily
derive the general form which is a linear combination of
two terms similar to (7). In Fig. 2(a) we compare (7)
(solid lines) to a Gaussian (dashed lines) and to results
from diagonalization of H for selected N . The low
energy excess is readily described, and the results are not
Gaussian for any N , in contrast to results from the dilute
limit [4]. In Fig. 2(b) we compare the same function with
slightly modified parameters (r3 �

p
2 and A1 � 3�4)

and see that this functional form can readily account for
the observed asymmetry in the U�6� results [1]. The
results for maximum J are shown in Fig. 1(b). Since this
FIG. 2. (a) Lowest eigenvalue distribution (7) for Jp � 01

states (solid line) compared to numerical TBRE calculations.
The Gaussian is for reference. (b) Same as (a) but for the
nuclear case.

Hilbert space is 1D, the distribution also corresponds to
the level density.

It is interesting to use fj�z� to estimate the level density
rJ�E� for states of spin J by averaging this over the space
of random polynomials. For J � Jmax, we trivially recover
(8). For J � 0 we find

r0�E� �
Z 1

0
dz

1p
2pg�z�

exp

∑
2

E2

2g�z�

∏
, (9)

where g�z� � ZT MZ , Z � �z2, z, 1�, which agrees well
with calculations (Fig. 3). r0�E� has moments:

�E2n�J�0 �
2n

p
G�n 1 1�2�

Z 1

0
g�z�n dz . (10)

One can see that the shape of the level density is a superpo-
sition of Gaussians of varying width. The width of the 01

density of states is �E2�J�0 � 0.784, while for the
maximum spin �E2�J�N � 1.137. In this model we see
that there is no direct relation between the widths of the
distributions and the probability of having a 01 ground
state, as has been conjectured in other TBREs [1,2].

FIG. 3. Theoretical density of states (9) for 01 states (solid
line) compared to a Gaussian, and numerical TBRE calculations
for selected N (symbols).
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FIG. 4. (a) Distribution of energy gaps p�g� where g �
p

2 3
N�Emin�J � 1� 2 Emin�J � 0��. The description is good,
demonstrating a predicted scaling, with the exception of the
behavior at the origin. (b) Same as (a) but for the nuclear case.
Here g � N�Emin�J � 2� 2 Emin�J � 0��.

Certainly the functional dependence of these moments
are distinct from the dependence of (5) and (6), which
is related to the ground state problem. Hence, the level
densities do not reflect ground state properties in the sense
that correlations between subspaces of different J , which
are central to that question, are not reflected in these
functions.

The distribution of 12 01 energy gaps, g̃ � E
1�N
min 2

E0
min, denoted p�g�, is obtained by averaging g̃ over

Eq. (4):

p�g� ~ exp�2g2�4r2
2 � �B1 exp�2g2�r2

1 1 r1 ? r2��D�
3 erfc�EB2� 2 erfc�gB3�� ,

(11)

where we find the scaling g �
p

2 Ng̃. Here, B1 � r2�q
r2

2 1 4r1 ? r2 1 4r2
1 � 1.059, B2 � �2r2

1 1 r1 ? r2 2

D��2
p

dD � 20.03, B3 � �r1 ? r2 1 r2
2 ���2r2

p
d � �

20.311, d � r2
1 r2

2 2 �r1 ? r2�2, and D � 4�r2
1 1 r1 ?

r2� 1 r2
2 (the numerical value is for N � 64). This

scaling in N is evident in Fig. 4(a) when we plot (11)
versus g. We note that p�g� describes the shape away
from the origin. [Near the origin there is an abundance of
small gaps that arise from the omitted region z [ �0, 1�].
We use the same function in Fig. 4(b) to compare to the
E21

1
2 E01

1
gaps computed in the nuclear TBRE, with

g � Ng̃. The same scaling is apparent. Finally, the
distribution of R4�2 � �E41 2 E01���E21 2 E01� has
been measured in the U�6� TBRE. The analogous quantity
in this model is R2�1 � �E21 2 E01���E12 2 E01�. The
distribution P�R2�1� can be derived and has peaks at 2 and
3 [� �J 1 1���J 2 1� for J � 2], consistent with those
in the U�6� model. To leading order this function is just a
sum of two delta functions, and higher order corrections
must be included to get the shape.

We have examined a bosonic TBRE which shares the
salient features of more complex TBREs, such as a Wigner
3776
limit for small N , Gaussian level densities for certain
states, preponderance of 01 ground states, and so forth.
By mapping the TBRE onto random polynomials on the
unit interval, we are able to analytically understand many
properties of the TBRE found numerically, including the
frequency of 01 ground states. We find the latter is not
attributed to the width of the level densities or the dimen-
sion of the Hilbert spaces. Rather, the various interactions
in H tend to put the extreme values of spin �J � 0, N� at
the ends of the spectra, enhancing their chances to be the
ground state. These results provide the first analytic under-
standing of ground state properties, distributions of lowest
eigenvalues, gaps and level densities for the TBRE. These
functions are also found to describe the nuclear proper-
ties obtained in the IBM. Scaling behavior has also been
predicted and verified in certain observables. Since the
analytic Lanczos approach can be generally applied, it
would be interesting to see if a more general connec-
tion can be made between the TBREs and random poly-
nomials [12].
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