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Gravitational Wave Bursts from Cosmic Strings
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Cusps of cosmic strings emit strong beams of high-frequency gravitational waves (GW). As a conse-
quence of these beams, the stochastic ensemble of gravitational waves generated by a cosmological net-
work of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that stand above
the rms GW background. These bursts might be detectable by the planned GW detectors LIGO/VIRGO
and LISA for string tensions as small as Gm � 10213. The GW bursts discussed here might be accom-
panied by gamma ray bursts.

PACS numbers: 04.30.Db, 11.27.+d, 95.85.Sz, 98.80.Cq
Cosmic strings are linear topological defects that could
be formed at a symmetry breaking phase transition in the
early Universe. Strings are predicted in a wide class of ele-
mentary particle models and can give rise to a variety of as-
trophysical phenomena [1]. In particular, oscillating loops
of string can generate a potentially observable gravitational
wave (GW) background ranging over many decades in fre-
quency. The spectrum of this stochastic background has
been extensively discussed in the literature [2–7], but until
now it has been tacitly assumed that the GW background
is nearly Gaussian. In this paper, we show that the GW
background from strings is strongly non-Gaussian and in-
cludes sharp GW bursts (GWB) emanating from cosmic
string cusps [8]. We shall estimate the amplitude, fre-
quency spectrum, waveform, and rate of the bursts, and
discuss their detectability by the planned GW detectors
LIGO/VIRGO and LISA.

We begin with a brief summary of the relevant string
properties and evolution [1]. A horizon-size volume at any
cosmic time t contains a few long strings stretching across
the volume and a large number of small closed loops. The
typical length and number density of loops formed at time
t are approximately given by

l � at, nl�t� � a21t23. (1)

The exact value of the parameter a in (1) is not known.
We shall assume, following [5], that a is determined by
the gravitational back reaction, so that a � GGm, where
G � 50 is a numerical coefficient, G is Newton’s constant,
and m is the string tension, i.e., the mass per unit length
of the string. The coefficient G enters the total rate of
energy loss by gravitational radiation dE�dt � GGm2.
For a loop of invariant length l [9], the oscillation period
is Tl � l�2 and the lifetime is tl � l�GGm � t.

A substantial part of the radiated energy is emitted from
near-cusp regions where, for a short period of time, the
string reaches a speed very close to the speed of light [4].
Cusps tend to be formed a few times during each oscil-
lation period [10]. Let us estimate the waveform of the
burst emitted near a cusp. It is technically easier to de-
rive the waveform in the frequency domain, rather than in
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the time domain. Let kmn � rphyshmn denote the product
of the metric perturbation, hmn � hmn 2

1
2hhmn , by the

distance away from the loop, estimated in the local wave
zone of the loop. kmn is given by a Fourier series whose
coefficients are proportional to the Fourier transform of the
stress-energy tensor of the string:

Tmn�kl� �
m

Tl

Z
Tl

dt ds � �Xm �Xn 2 X 0mX 0n�e2ikX . (2)

Here Xm�t, s� represents the string world sheet, parame-
trized by the conformal coordinates t and s. ( �X � ≠tX,
X 0 � ≠sX.) In the direction of emission n, km � �v, k�
runs over the discrete set of values 4pl21m�1, n�, where
m � 1, 2, . . . . Near a cusp (and only near a cusp) the
Fourier series giving kmn is dominated by large m val-
ues, and can be approximated by a continuous Fourier in-
tegral. The continuous Fourier component (corresponding
to an octave of frequency around f) k� f� � j fjek� f� �
j fj

R
dt exp�2pift�k�t� is then given by

kmn� f� � 2Glj fjTmn�kl� . (3)

Thereby the problem of finding the waveform is reduced
to estimating the Fourier transform of the string stress-
energy tensor in the limit of high frequencies, f ¿ T21

l .
An asymptotic estimate of Tmn�kl� can be obtained
using the local Taylor expansion of Xm�t, s� near the
cusp. More precisely, we decompose the string motion in
right-moving and left-moving parts, Xm � 1

2 �Xm
1�s1� 1

Xm
2�s2��, where s6 � t 6 s, and shift t and s so that

the cusp is localized at t � 0 � s. The leading approxi-
mation to the waveform is then obtained by replacing in
(2) X

m
6 by their Taylor expansions in powers of s6 up

to the cubic order. For a given f ¿ T21
l , one finds that

the integral (2) is significant only if the angle u between
the direction of emission n and the “3-velocity” of the
cusp nc is smaller than about um � �Tlj fj�21�3. We
estimate the waveform for all angles u # um by using the
limit u ø um in the integral (2). After a suitable gauge
transformation, we find [11]

kmn� f� � 2CGme2piftc �2pj fj�21�3A
�m
1 An�

2 , (4)
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where C � 4p�12�4�3�3G�1�3��22, tc is a constant (which
defines the arrival time of the center of the burst), and the
linear polarization tensor is the symmetric tensor product
of A

m
6 � Ẍ

m
6�jẌ6j

4�3. By taking the inverse Fourier trans-
form of Eq. (4), we then obtain the result that the time-
domain waveform is proportional to

h�t� ~ jt 2 tcj
1�3, (5)

where tc corresponds to the peak of the burst. The sharp
spike at t � tc exists only in the limit where u is exactly
0 (i.e., if one observes it exactly in the direction defined
by the cusp velocity). When 0 fi u ø 1, the spike is
smoothed over jt 2 tcj � u3Tl . [In the Fourier domain
this smoothing corresponds to an exponential decay for
frequencies j fj ¿ 1��u3Tl�.]

Equation (4) gives the waveform in the local wave zone
of the oscillating loop: hmn � kmn�rphys. To take into
account the subsequent propagation of this wave over cos-
mological distances, until it reaches us, one must intro-
duce three modifications in this waveform: (i) Replace
rphys by a0r where r is the comoving radial coordinate
in a Friedman universe [taken to be flat: ds2 � 2dt2 1

a�t�2�dr2 1 r2dV2�] and a0 � a�t0� the present scale
factor. (ii) Express the locally emitted frequency in terms
of the observed one fem � �1 1 z�fobs where z is the red-
shift of the source. (iii) Transport the polarization tensor
of the wave by parallel propagation (pp) along the null
geodesic followed by the GW:

hmn� f� � kpp
mn����1 1 z�f�����a0r� . (6)

Here, and henceforth, f . 0 denotes the observed fre-
quency. In terms of the redshift we have a0r � 3t0�1 2

�1 1 z�21�2�, where t0 is the present age of the Universe
(this relation holds during the matter era, and can be used
for the present purpose in the radiation era because a0r
has a finite limit for large z).

For our order-of-magnitude estimates we shall assume
that jẌ6j � 2p�l. The various numerical factors in the
equations above nearly compensate each other to give the
following simple estimate for the observed waveform in
the frequency domain [h� f� � j fjeh� f�]:

h� f� �
Gml

��1 1 z�fl�1�3

1 1 z
t0z

. (7)

Here the explicit redshift dependence is a convenient sim-
plification of the exact one given above. This result holds
only if, for a given observed frequency f, the angle u �
cos21�n ? nc� satisfies

u & um � ��1 1 z�fl�2�21�3. (8)

To know the full dependence of h� f� on the redshift we
need to express l � at in terms of z. We write

l � at0wl�z�; wl�z� � �1 1 z�23�2�1 1 z�zeq�21�2.
(9)

Here zeq � 2.4 3 104V0h2
0 � 103.9 is the redshift of

equal matter and radiation densities, and we found it
3762
convenient to define the function wl�z� which interpolates
between the different functional z dependences of l in the
matter era, and the radiation era. (We shall systematically
introduce such interpolating functions of z, valid for all
redshifts, in the following.) Inserting Eq. (9) into Eq. (7)
yields

h� f, z� � Gma2�3� ft0�21�3wh�z� ,

wh�z� � z21�1 1 z�21�3�1 1 z�zeq�21�3.
(10)

Let us now turn to the problem of estimating the rate
of occurrence of GWBs. We start by estimating the rate
of GWBs originating at cusps in the redshift interval
dz, and observed around the frequency f, as d �N �
1
4u2

m�1 1 z�21n�z� dV �z�. Here, the first factor is the
beaming fraction within the cone of maximal angle
um� f, z�, Eq. (8), the second factor comes from the rela-
tion dtobs � �1 1 z� dt, n�t� � cnl�t��Tl � 2ca22t24

is the number of cusp events per unit spacetime volume,
c is the average number of cusps per oscillation period
of a loop, Tl � at�2, and dV �z� is the proper volume
between redshifts z and z 1 dz. In the matter era
dV � 54pt3

0��1 1 z�1�2 2 1�2�1 1 z�211�2 dz, while in
the radiation era dV � 72pt3

0�1 1 zeq�1�2�1 1 z�25 dz.
The function �N� f, z� � d �N�d lnz can be approximately
represented by the following interpolating function of z:

�N� f, z� � 102ct21
0 a28�3� ft0�22�3wn�z� ,

wn�z� � z3�1 1 z�27�6�1 1 z�zeq�11�6.
(11)

The quantity c is not known with certainty; in the fol-
lowing we shall assume c � 1. (The effect of c fi 1 is
obtained by replacing �N ! �N�c in the formulas below.)
The observationally most relevant question is the follow-
ing: What is the typical amplitude of bursts hburst

�N
� f� that

we can expect to detect at some given rate �N , say, one per
year? Using �N �

Rzm

0
�N� f, z� d lnz � �N� f, zm�, where

zm is the largest redshift contributing to �N , one can esti-
mate hburst

�N
� f� by solving for z in Eq. (11) and substituting

the result z � zm� �N , f� in Eq. (10). The final answer has
a different functional form depending on the magnitude
of the quantity,

y� �N , f� � 1022 �Nt0a8�3� ft0�2�3. (12)

Indeed, if y , 1 the dominant redshift will be zm� y� , 1,
while, if 1 , y , z

11�6
eq , 1 , zm� y� , zeq, and, if y .

z
11�6
eq , zm� y� . zeq. We can again introduce a suitable

interpolating function g� y� to represent the final result as
an explicit function of y:

hburst
�N

� f� � Gma2�3� ft0�21�3g� y� �N , f�� ,

g� y� � y21�3�1 1 y�213�33�1 1 y��zeq�11�6�3�11.
(13)

The prediction equation (13) for the amplitude of the
GWBs generated at cusps of cosmic strings is the main
new result of this work. To see whether or not these bursts
can be distinguished from the stochastic gravitational wave
background we have to compare the burst amplitude (13)
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to the rms amplitude of the background, hrms, at the same
frequency. We define hrms as the “confusion” part of the
ensemble of bursts Eq. (13), i.e., the superposition of all
the “overlapping” bursts, those whose occurrence rates are
higher than their typical frequencies. This can be ex-
pressed as

h2
rms� f� �

Z 0

h2� f, z�nz� f� d lnz , (14)

where h� f, z� is from Eq. (10), nz� f� � f21 �N� f, z� is
the number of overlapping bursts within a frequency oc-
tave, and the “primed” integration is performed over all
lnz such that nz� f� . 1, and um� f, z� , 1. Equation (14)
differs from previous estimates of the stochastic back-
ground [2–7] [beyond the fact that we use the simplified
loop density model Eq. (1)] in that the latter did not in-
corporate the restriction to nz� f� . 1; i.e., they included
nonoverlapping bursts in the average of the squared GW
amplitude.

It is easily checked from Eq. (13) that hburst is a mono-
tonically decreasing function of both �N and f. These de-
cays can be described by (approximate) power laws, with
an index which depends on the relevant range of domi-
nant redshifts; e.g., as �N increases, hburst decreases first
like �N21�3 (in the range zm , 1), then like �N28�11 (when
1 , zm , zeq), and finally like �N25�11 (when zm . zeq).
For the frequency dependence of hburst, the correspond-
ing power-law indices are successively 25�9, 29�11, and
27�11. [These slopes come from combining the ba-
sic f21�3 dependence of the spectrum of each burst with
the indirect dependence on f of the dominant redshift
zm�a, �N , f�.] By contrast, when using our assumed link
Gm � a�50 between the string tension m and the parame-
ter a, one finds that the index of the power-law depen-
dence of hburst upon a takes successively the values 17�9,
23�11, and 15�11. Therefore, in a certain range of values
of a [corresponding to 1 , zm�a, �N , f� , zeq] the GWB
amplitude (paradoxically) increases as one decreases a,
i.e., Gm.

In Fig. 1 we plot (as a solid line) the logarithm of
the GW burst amplitude, log10�hburst�, as a function of
log10�a�, for �N � 1 yr21, and for f � fc � 150 Hz.
This central frequency is the optimal one for the detection
of a f21�3 spectrum burst by LIGO. (The expected burst
amplitude for other values of the rate �N can be obtained
from Fig. 1 using the power-law dependence on �N given
above.) We indicate on the same plot (as horizontal
dashed lines) the (one sigma) noise levels hnoise of LIGO 1
(the initial detector), and LIGO 2 (its planned advanced
configuration). The VIRGO detector has essentially the
same noise level as LIGO 1 for the GW bursts considered
here. These noise levels are defined so that the integrated
optimal (with a matched filter ~ j fj21�3) signal to noise
ratio (SNR) for each detector is SNR � hburst� fc��hnoise.
The short-dashed line in the lower right corner is the
rms GW amplitude, Eq. (14). One sees that the burst
amplitude stands well above the stochastic background
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FIG. 1. Gravitational wave amplitude of bursts emitted by cos-
mic string cusps in the LIGO/VIRGO frequency band, as a func-
tion of the parameter a � 50Gm (in a base-10 log-log plot).
The horizontal dashed lines indicate the one sigma noise levels
(after optimal filtering) of LIGO 1 (initial detector) and LIGO 2
(advanced configuration). The short-dashed line indicates the
rms amplitude of the stochastic GW background.

[12]. Clearly the search by LIGO/VIRGO of the type
of GW bursts discussed here is a sensitive probe of the
existence of cosmic strings in a larger range of values of
a than the usually considered search for a stochastic GW
background.

From Fig. 1 we see that the discovery potential of
ground-based GW interferometric detectors is richer than
hitherto envisaged, as it could detect cosmic strings in the
range a * 10210, i.e., Gm * 10212 (which corresponds
to string symmetry breaking scales *1013 GeV). Let us
also note that the value of a suggested by the (supercon-
ducting-) cosmic-string gamma ray burst (GRB) model
of Ref. [13], namely a � 1028, nearly corresponds, in
Fig. 1, to a local maximum of the GW burst amplitude.
(This local maximum corresponds to zm � 1. The local
minimum on its right corresponds to zm � zeq.) In view
of the crudeness of our estimates, it is quite possible
that LIGO 1/VIRGO might be sensitive enough to detect
these GW bursts. Indeed, if one searches for GW bursts
which are (nearly) coincident with (some [14]) GRB, the
needed threshold for a convincing coincident detection is
much closer to unity than in a blind search. [In a blind
search, by two detectors, one probably needs SNRs �4.4
to allow for the many possible arrival times. Note that
the optimal filter, htemplate� f� � e2piftc j fj21�3, for our
GWBs contains tc as the only parameter.]

In Fig. 2 we plot log10�hburst� as a function of log10�a�
for �N � 1 yr21, and for f � fc � 3.9 3 1023 Hz. This
frequency is the optimal one for the detection of a f21�3

GWB by the planned space-borne GW detector LISA. (In
determining the optimal SNR in LISA we combined the
latest estimate of the instrumental noise [15] with estimates
of the galactic confusion noise [16].) Figure 2 compares
hburst� fc� to both LISA’s (filtered) noise level hnoise and
to the cosmic-string-generated stochastic background hrms,
Eq. (14). The main differences from the previous plot are
(i) the signal strength and the SNR are typically much
higher for LISA than for LIGO, and (ii) though the GW
3763
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FIG. 2. Gravitational wave amplitude of bursts emitted by cos-
mic string cusps in the LISA frequency band, as a function
of the parameter a � 50Gm (in a base-10 log-log plot). The
short-dashed curve indicates the rms amplitude of the stochastic
GW background. The lower long-dashed line indicates the one
sigma noise level (after optimal filtering) of LISA.

burst signal still stands out well above the rms background,
the latter is now higher than the (broadband) detector noise
in a wide range of values of a. LISA is clearly a very
sensitive probe of cosmic strings. It might detect GWBs
for values of a as small as �10211.6. [Again, a search
in coincidence with GRBs would ease detection. Note,
however, that, thanks to the lower frequency range, even
a blind search by the (roughly) two independent arms of
LISA would need a lower threshold, �3, than LIGO.]

We have performed a similar analysis for GW bursts
originating at kink discontinuities [17]. The amplitude of
these “kink” GW bursts is found to be smaller than the
“cusp” ones discussed above, but they are important to
consider because kinks are expected to be ubiquitous both
on loops and on long strings [18].

When comparing our results with observations, one
should keep in mind that the model we used for cosmic
strings involves a number of simplifying assumptions.
(i) All loops at time t were assumed to have length
l � at with a � GGm. It is possible, however, that
the loops have a broad length distribution n�l, t� and that
the parameter a characterizing the typical loop length is
in the range GGm , a & 1023. (ii) We also assumed
that the loops are characterized by a single length scale l,
with no wiggliness on smaller scales. Short-wavelength
wiggles on scales øGGmt are damped by gravitational
back reaction, but some residual wiggliness may survive.
As a result, the amplitude and the angular distribution
of gravitational radiation from cusps may be modified.
(iii) We assumed the simple, uniform estimate Eq. (1) for
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the space density of loops. This estimate may be accurate
in the matter era but is probably too small by a factor
of �10 in the radiation era [1]. (iv) Finally, we disre-
garded the possibility of a nonzero cosmological constant
which would introduce some quantitative changes in our
estimates.
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