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We study a class of stochastic ballistic annihilation and coalescence models with a binary velocity
distribution in one dimension. We obtain an exact solution for the density which reveals a universal
phase diagram for the asymptotic density decay. By universal we mean that all models in the class are
described by a single phase diagram spanned by two reduced parameters. The phase diagram reveals
four regimes, two of which contain the previously studied cases of ballistic annihilation. The two new
phases are a direct consequence of the stochasticity. The solution is obtained through a matrix product
approach and builds on properties of a g-deformed harmonic oscillator algebra.
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Systems of reacting particles are used to model a whole
gamut of phenomena relevant to fields ranging from chemi-
cal physics through statistical physics to mathematical
biology. In some applications the particles represent
chemical or biological species [1,2]; in other cases they
are to be interpreted as composite objects such as aggre-
gating traffic jams [3]. Excitations can also be treated
as interacting particles, one example being laser-induced
excitons in certain crystals [4]. Furthermore, domain
walls occurring in a number of different contexts such
as growth and coarsening processes [5,6] have dynamics
with a natural particle interpretation.

Generally these systems are defined through nonequilib-
rium dynamics. Given such a wide variety of nonequilib-
rium reaction systems, it is natural to ask if they can be
divided into distinct groups akin to the universality classes
known for equilibrium systems.

Two reactions that have been extensively studied are
single species annihilation (A + A — (J) and coalescence
(A + A— A). A particularly striking result is that if the
reactant motion is diffusive, the two processes belong to
the same universality class [7] and the density decay is
independent of the reaction rate in two dimensions and
below. Moreover, these diffusive systems have also served
as prototypes for the development of a variety of theoretical
tools ranging from field theoretic renormalization group
(RG) [8], to exact methods in low dimensions [9].

On the other hand, much less is known about the same
reactions when the motion is ballistic (deterministic) de-
spite the relevance of such motion to the modeling of
growth and coarsening processes [5,6]. A seminal model
was introduced and solved by Elskens and Frisch [10]
and describes pairwise annihilation of oppositely moving
particles in one dimension (1D). That study was restricted
to particles that react upon contact with probability one.
More recently results have been obtained for systems in
which the reaction probability is less than one, thus intro-
ducing stochasticity into the evolution [11,12].

In this work we introduce a class of 1D stochastic bal-
listic reaction systems. The class includes both ballistic
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annihilation and coalescence and incorporates as special
limits the models of [10] and [12]. We obtain an exact so-
lution for the density decay which reveals a single phase
diagram common to all combinations of ballistic annihila-
tion and coalescence. This demonstrates a universality of
the two processes. The universality is stronger than that
usually discussed in an RG context and can be likened to
a law of corresponding states. The phase diagram generi-
cally comprises four decay regimes in contrast to the two
previously known [10]. The new phases are a result of the
stochasticity of the reactions.

Our exact solution is based on the invariance of certain
properties of our class of models under change of the initial
spacing of the particles. As a consequence the long-time
density may be determined exactly through a matrix prod-
uct approach of the type introduced in [13]. We use this
property, and employ recent results on g-deformed alge-
bras [14], to analyze the asymptotic density decay.

We now define the class of models to be considered.
At time ¢+ = 0 reactants are placed on a line with nearest-
neighbor distances chosen independently from a con-
tinuous exponential distribution. The unit of length is
chosen so that the initial density is ¢ = 1. Although we
consider here a Poisson initial condition, our methods are
extendable to more general initial distributions (see below).
Each particle is assigned a velocity +c (right moving) or
—c (left moving) with probability fg and f; = 1 — fg,
respectively. Particles move ballistically until two collide,
at which point one of four outcomes follows; see Fig. 1:
the particles pass through each other with probability g;
the particles coalesce into a left- (right-)moving particle
with probability pnr (png); the particles annihilate with
probability p(1 — i, — mg). Here p =1 — ¢q is the
probability that some reaction occurs.

Before describing our method of solution, we present
our main results summarized in the phase diagram, Fig. 2.
Two important quantities that emerge are the reduced
densities f; = fr.(1 — mg) and fr = fr(1 — ). The
phase diagram is spanned by ¢, the probability of not re-
acting, and y = fr/f1, the ratio of reduced densities. For
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The possible reactions and their probabilities.

simplicity we consider y = 1 which results in eventual
extinction of right-moving particles; y = 1 is a special
case where both species die out. The case y > 1 can be
treated using the symmetry of the model under left-right
interchange fr < f. and ng < 71, 1e., yx — 1/x.

The different phases —of which two are regions and two
are lines in the phase diagram— correspond to four qualita-
tive long-time density decays. When y < ¢ the decay is
purely exponential of the form ¢ = . + b exp(—ai1);
when y = ¢? the decay is exponential, multiplied by a
172 power law © = Q. + byexp(—ant)/t'/?; when
g> < x < 1 the decay exponential, multiplied by a 1732
power law @ = 0. + bzexp(—ast)/t?/?; finally when
x = | the decay is pure power law @ = b,/t'/2. The
exact expressions for the coefficients «, b, and final den-
sity 0. are as given in Table I. Some intriguing features
that emerge from the phase diagram Fig. 2 are as follows.

(i) There is universality of ballistic annihilation and co-
alescence. This is manifested by the fact that all the in-
formation concerning the reactions of a particular model,
along with the initial densities, are encoded into a single
parameter ). For a generic choice of ng, 1, defining a
particular annihilation-coalescence model, the same four
decay regimes are found by varying the initial densities or
stochasticity parameter ¢g. In this way the universality can
be considered as a law of corresponding states.

(i1) Two new density decays appear which were not an-
ticipated in previous works. The first is the line y = ¢>
and the second the region y < g?. Thus for a generic
value of the reaction probability 1 — ¢, varying the initial
densities gives rise to four types of asymptotic decay.

(iii) The deterministic case ¢ = 0 is nongeneric since
along this line only two of the possible phases are tra-
versed. For the pure annihilation model (ng = n, = 0)
these phases were found in [10]. Thus we refer to the en-
tire region g> < y < 1 as the Elskens-Frisch phase.

1

X Elskens-Frisch
phase

Pure exponential
phase

0 ' q 1

o

FIG. 2. The phase diagram of the model for y = 1. The be-
havior for y > 1 can be deduced from that with y < 1 via a
left-right symmetry (see text).

TABLE I. Long-time density decays to the asymptotic value
0- = fr(1 — x). Results for y > 1 can be obtained via the
right-left symmetry (see text). K is given by (10).

e(r) — o=
Y < g el — {_&)672(1*11)(./”2*1';/11)6!
X =q S ()4 e 21 1 e
F foR (cn)17?
¢ <x<l1 (kY4 SLLitfut] P AT L
e 7 fR NENGEE (cry?
= 1 1/4¢ 1\1/2
x=1 7 ()@

(iv) The line y = 1 (equal reduced densities) is non-
generic since a single, power law, decay regime is found.
The decay does not depend on the stochasticity g. For
nr = m = 0 this special line corresponds to equal ini-
tial densities [12]. Our results show that such a special
line exists for all combinations of annihilation and coales-
cence. This phase can be understood through the picture
of [10]. Density fluctuations in the initial conditions lead
to trains of left- and right-moving particles: in a length
~t the excess particle number is ~t'72 which yields the
112 density decay. At long times, the train size is large
and so a particle in one train encounters many particles in
the other and will eventually react making the parameter
q irrelevant.

(v) In the two new phases (y = ¢?) the two species
decay at unequal rates leaving a nonzero population of
left-moving particles. This is to be contrasted to the
Elskens-Frisch phase (y > g?) where the final density of
one species is nonzero but both species decay at the same
rate. A simple example of nonequal decays is the case
nr = 0,n. = 1 (x = 0). Then left-moving particles do
not decay but simply absorb the right-moving particles
with probability 1 — ¢ giving @ = fre 2U~9/1¢t - Qur
results show that, in general, increasing ¢ leads to a non-
trivial transition at y = ¢” to a regime where the two
species have different decay forms.

We now turn to the method of derivation of the phase
diagram. The density is given by

o) = fRP“”m + f1PY ), (1)

where PS (t) and PS (t) are the probabilities that a
left- and right-moving particle survive up to a time f,
respectively. These two probabilities are related by the
left-right symmetry noted previously; therefore, if we

calculate P;R)(t) for all y we can infer PfgL)(t).

To calculate PSR (7) consider the leftmost, right-moving
particle in Fig. 3 which we refer to as a test particle.
From the figure one can see that the initial spacing of the
particles on the line does not affect the sequence of
possible reactions for any given particle, in particular,
for the test particle (we return to this point later). Also
note that after a given time ¢, the test particle may have
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FIG. 3. A configuration and set of trajectories and reactions
for a test particle (shaded and bold line) encountering a string
of N = 10 particles. Note how changing the spacing between,
for example, the fifth and sixth particles (indicated by dotted
lines) alters the time sequence of the reactions but not the final
survival probability.

interacted only with the N particles initially placed within
a distance X = 2c¢t (and to the right) of the chosen
particle. These two facts imply that the survival prob-
ability can be expressed in terms of two independent
functions. The first is F(N), the probability that the test
particle survives reactions with the N particles initially
to its right, and depends only on the sequence of the N
particles. The second is G(N;X), the probability that
initially there were exactly N particles in a region of size
X = 2ct. Explicitly,

P00 = ¥ FINGWN; X). @)

N=0

Thus the problem is reduced to two separate combinato-
rial problems of calculating G(N; X) and F(N). For the
Poisson initial conditions G(N;X) = XNe X/N![15]. In
the following we show how the second problem may be
solved by employing a matrix product approach [13].

As an example consider a test particle encountering the
string of reactants depicted in Fig. 3. We claim that the
probability of the test particle surviving through this string
may be written as

(W|IRRRLRLLLLR|V), 3)

where R, L are matrices (or operators) and (W|, |V} vectors
with scalar product (W | V) = 1. Thus we write, in order,
a matrix R (L) for each right- (left-)moving particle in the
initial string.

We now show that the conditions for an expression such
as (3) to hold for an arbitrary string are

RL =qgLR + p(nL + ngR +[1 —n, — mr])., &)
(WIL = (W|(q + pnr), RIV)=1V). (5

To understand condition (4), recall that after an interaction
between a right-moving and left-moving particle there are
four possible outcomes (see Fig. 1) corresponding to the
four terms on the right-hand side of Eq. (4) with probabil-
ities given by the respective coefficients. Using (4), any
initial matrix product such as (3) can be reduced to a sum
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of terms of form (W|L*R'|V') corresponding to all possible
final states ensuing from the initial string and with coef-
ficients equal to the probabilities of each final state. The
test particle will survive such a final state and pass through
the s left-moving particles with probability (g + png)®.
The conditions (5) ensure that this probability is obtained
for each possible final state.

The above approach relies on an important property of
the system which is invariance of a reaction sequence with
respect to changes of initial particle spacings. To under-
stand this, consider again Fig. 3. By altering the initial
spacings of the particles, the absolute times at which tra-
jectories intersect and reactions may occur (if the reac-
tants have survived) may be altered. For example, by
increasing the spacing between the fifth and sixth particles,
the trajectories of the third and fourth particles can be
made to intersect first. However as we have already seen,
for any particle, the order of intersections it encounters
does not change and so the final states and probabilities
are invariant. This invariance is manifested in the ma-
trix product by the fact that the order in which we use the
reduction rule (4) is unimportant, i.e., matrix multiplication
is associative.

Averaging over all initial strings of length N yields

F(N) =(WI(fLL + frR)VIV). (6)

To evaluate F(N) we write R = +/frf1/fra + n and

L= \/f;éfz/fLa‘L + mg. One can check from (4) and (5)
that a, a® satisfy a g-deformed harmonic oscillator algebra

aat — ana =1-gq, (7)
Wlat = Wlq/yx,  alvy=yxIV). ®

As is evident from (8) the vectors |W), |V) are eigenvec-
tors of a, and are called g-deformed coherent states. The
explicit form of these eigenvectors is known [14]. Using
the above definitions (6) becomes

FIN) = (WINfrfi(a +a") + 1 — f5 — fxlVIv).
©9)

In the deterministic limit, ¢ = 0, (7) becomes aat = 1
and a, at are ladder operators. For y = 1, as in [10], one
can see using (8) that the matrix product (9) is equivalent
to a problem of counting 1D random walks that do not
return to the origin [5]. For general ¢, the evaluation of
(9) poses a g-combinatoric problem, the solution of which
we now outline.

We take advantage of recent techniques and results [14]
for the calculation of matrix products such as (9). The
approach is based on the fact that the eigenstates of the
operator x = a + a' (analogous to the position operator
in the usual harmonic oscillator) can be expressed in terms
of g-deformed Hermite polynomials, whose orthogonal-
ity properties and generating functions are known. De-
composing (W| and |V) onto the eigenbasis of x allows
an integral representation of F(N). From this expres-
sion the large N behavior can be extracted by using stan-
dard asymptotic analysis detailed in [14]. The results are
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summarized in Table II in which
_ Ifl (1 —q"*
ami (U= g X (1L — q"/yx)*

Using Eq. (2) and the results of Table II, one can calcu-
late the asymptotic density (1) for any initial spatial distri-
bution of particles. In Table I we present the results found
with G(N; X) given by the Poisson initial condition.

In summary we have studied stochastic ballistic anni-
hilation and coalescence in 1D. The asymptotic density
was calculated exactly for Poisson initial conditions. The
resulting phase diagram is described by two parameters g
and y. The first is a measure of stochasticity while the
second encodes information about the reaction processes
and the initial densities. The phase diagram contains two
new regimes which were not known before.

One application of our results is to generalize the surface
growth model of [5]. In that model down (up) steps of a
1D interface move deterministically to the right (left) and
annihilate on meeting. Thus the surface smoothens with
time. Our results for 7, = ng = 0 allow one to consider
the effect of a probability g of a new terrace being formed
when steps meet and the effect of an overall tilted surface
(x # 1). We see that for y = 1 the probability ¢ does not
affect the long-time smoothing of the interface, whereas
for a tilted interface the smoothing behavior changes for
9’ = x.

Our results are exact in the long-time limit. It would
be interesting to study the approach to this asymptotic be-
havior. One way to do this would be through extensive
numerical simulations although, as the crossover time is
expected to grow with g, the simulation time needed can
be very large. Previous numerical studies [16] were per-
formed at relatively short times and indicated that along
the line y = 1 the decay exponent depends on g which is
not the case in the true long-time limit.

Our results allow extension to other initial spatial dis-
tributions by using the results in Table II and appropriate
forms for G(N,X) in (2). We expect other distributions,
for which the number of particles in a macroscopic region
obeys a central limit theorem, to exhibit the same phases.
However, power law distributions might generate different
behavior.

Generalizations to higher dimensions and more than two
velocities are desirable. Indeed, even in one dimension and
with reaction probability one, models with more than two
velocities have been shown to exhibit rich behavior [17].
It would be interesting to try and generalize the analytical
approach presented here to that case.

(10)

TABLE II. Explicit expressions of the parameters in the
generic decay form F(N) — F.. = A(l1 — B)N*YN~7.  For
x =1,F,=0,and for y > 1I,F. =1 — f/fx.

A B y
x<q 1—#;— I-@i-1 0
x=a = G WL =P 3
@?<y<l ﬁm(m)m Wi = VR )? %
x=1 7= G 0 3
x> e Gt WV 3
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