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We discuss the regimes of quantum degeneracy in a trapped 1D gas and obtain the diagram of states.
Three regimes have been identified: the Bose-Einstein condensation (BEC) regimes of a true condensate
and quasicondensate, and the regime of a trapped Tonks gas (gas of impenetrable bosons). The presence
of a sharp crossover to the BEC regime requires extremely small interaction between particles. We
discuss how to distinguish between true and quasicondensates in phase coherence experiments.

PACS numbers: 03.75.Fi, 05.30.Jp
Low-temperature 1D Bose systems attract a great deal of
interest as they show a remarkable physics not encountered
in 2D and 3D. In particular, the 1D Bose gas with repul-
sive interparticle interaction (the coupling constant g . 0)
becomes more nonideal with decreasing 1D density n [1].
The regime of a weakly interacting gas requires the cor-
relation length lc � h̄�pmng (m is the atom mass) to be
much larger than the mean interparticle separation 1�n.
For small n or large interaction, where this condition is
violated, the gas acquires Fermi properties as the wave
function strongly decreases at short interparticle distances
[1,2]. In this case it is called a gas of impenetrable bosons
or Tonks gas (cf. [3]).

Spatially homogeneous 1D Bose gases with repulsive
interparticle interaction have been extensively studied in
the last few decades. For the delta-functional interaction,
Lieb and Liniger [1] have calculated the ground state en-
ergy and the spectrum of elementary excitations which at
low momenta turns out to be phononlike. Generalizing the
Lieb-Liniger approach, Yang and Yang [4] have proved
the analyticity of thermodynamical functions at any finite
temperature T , which indicates the absence of a phase
transition. However, at sufficiently low T the correlation
properties of a 1D Bose gas are qualitatively different from
classical high-T properties. In the regime of a weakly in-
teracting gas (nlc ¿ 1) the density fluctuations are sup-
pressed [5], whereas at finite T the long-wave fluctuations
of the phase lead to exponential decay of the one-particle
density matrix at large distances [5,6]. A similar picture,
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with a power-law decay of the density matrix, was found
at T � 0 [7,8]. Therefore, the Bose-Einstein condensate is
absent at any T , including T � 0. From a general point of
view, the absence of a true condensate in 1D at finite T fol-
lows from the Bogolyubov k22 theorem as was expounded
in [9] (for the T � 0 case, see [10]). Earlier studies of 1D
Bose systems are reviewed in [11]. They allow us to con-
clude that in 1D gases the decrease of temperature leads to
a continuous transformation of correlation properties from
ideal-gas classical to interaction/statistics dominated. A
1D classical field model for calculating correlation func-
tions in the conditions, where both the density and phase
fluctuations are important, was developed in [12] and for
Bose gases in [13]. Interestingly, 1D gases can possess
the property of superfluidity at T � 0 [11,14]. Moreover,
at finite T one can have metastable supercurrent states
which decay on a time scale independent of the size of the
system [15].

The earlier discussion of 1D Bose gases was mostly aca-
demic as there was no possible realization of such a system.
Fast progress in evaporative and optical cooling of trapped
atoms and the observation of Bose-Einstein condensation
(BEC) in trapped clouds of alkali atoms [16] stimulated a
search for nontrivial trapping geometries. At present, there
are significant efforts to create (quasi-)1D trapped gases
[17], where the radial motion of atoms in a cylindrical trap
is (tightly) confined to zero point oscillations. Then, kine-
matically the gas is 1D, and the difference from purely
1D gases is related only to the value of the interparticle
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interaction which now depends on the radial confinement.
The presence of the axial confinement allows one to speak
of a trapped 1D gas.

Ketterle and van Druten [18] considered a trapped 1D
ideal gas and have revealed a BEC-like behavior of the
cloud. They have established that at temperatures T ,

Nh̄v� ln2N , where N is the number of particles and v is
the trap frequency (we use the Boltzmann constant kB �
1), the population of the ground state rapidly grows with
decreasing T and becomes macroscopic.

A fundamental question concerns the influence of inter-
particle interaction on the presence and character of BEC.
In this Letter we discuss the regimes of quantum degener-
acy in a trapped 1D gas with repulsive interparticle interac-
tion. We find that the presence of a sharp crossover to the
BEC regime, predicted in [18], requires extremely small
interaction between particles. Otherwise, the decrease of
temperature leads to a continuous transformation of a clas-
sical gas to quantum degenerate. We identify three regimes
at T ø Td , where Td � Nh̄v is the degeneracy tempera-
ture. For a sufficiently large interparticle interaction and
the number of particles much smaller than a characteristic
value N�, at any T ø Td one has a trapped Tonks gas char-
acterized by a Fermi-gas density profile. For N ¿ N� we
have a weakly interacting gas. The presence of the trap-
ping potential introduces a finite size of the sample and
drastically changes the picture of long-wave fluctuations
of the phase compared to the uniform case. We calculate
the density and phase fluctuations and find that well below
Td there is a quasicondensate, i.e., the BEC state where
the density fluctuations are suppressed but the phase still
fluctuates. At very low T the long-wave fluctuations of the
phase are suppressed due to a finite size of the system, and
we have a true condensate. The true condensate and the
quasicondensate have the same Thomas-Fermi density pro-
file and local correlation properties, and we analyze how
to distinguish between these BEC states in an experiment.

We first discuss the coupling constant g for possible
realizations of 1D gases. These realizations imply particles
in a cylindrical trap, which are tightly confined in the radial
(r) direction, with the confinement frequency v0 greatly
exceeding the mean-field interaction. Then, at sufficiently
low T the radial motion of particles is essentially “frozen”
and is governed by the ground-state wave function of
the radial harmonic oscillator. If the radial extension of
the wave function, l0 � �h̄�mv0�1�2 ¿ Re, where Re

is the characteristic radius of the interatomic potential, the
interaction between particles acquires a 3D character and
will be characterized by the 3D scattering length a. In
this case, assuming l0 ¿ jaj, we have

g � 2h̄2a�ml2
0 . (1)

This result follows from the analysis in [19] and can also
be obtained by averaging the 3D interaction over the radial
density profile. Thus, statistical properties of the sample
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are the same as those of a purely 1D system with the
coupling constant given by Eq. (1).

In the regime of a weakly interacting gas, where nlc ¿
1, we have a small parameter

g � 1��nlc�2 � mg�h̄2n ø 1 . (2)

For particles trapped in a harmonic (axial) potential
V �z� � mv2z2�2, one can introduce a complementary
dimensionless quantity a � mgl�h̄2 which provides a
relation between the interaction strength g and the trap
frequency v (l �

p
h̄�mv is the amplitude of axial zero

point oscillations).
At T � 0 one has a true condensate: In the Thomas-

Fermi (TF) regime the mean square fluctuations of the
phase do not exceed �g1�2 and, hence, they are small
under the condition (2) (see [20]). The condensate wave
function is determined by the Gross-Pitaevskii equation
which gives the TF parabolic density profile n0�z� �
n0m�1 2 z2�R2

TF�. The maximum density n0m � m�g,
the TF size of the condensate RTF � �2m�mv2�1�2, and
the chemical potential m � h̄v�3Na�4

p
2 �2�3. For a ¿

1 we are always in the TF regime (m ¿ h̄v). In this case,
Eq. (2) requires a sufficiently large number of particles:

N ¿ N� � a2. (3)

Note that under this condition the ratio m�Td �
�a2�N�1�3 ø 1. For a ø 1 the criterion (2) of a weakly
interacting gas is satisfied at any N , and the condensate
is in the TF regime if N ¿ a21. In the opposite limit
the mean-field interaction is much smaller than the level
spacing in the trap h̄v. Hence, one has a macroscopic
occupation of the ground state of the trap; i.e., there is an
ideal gas condensate with a Gaussian density profile.

At this point, we briefly discuss the crossover to the
BEC regime, predicted by Ketterle and van Druten for a
trapped 1D ideal gas [18]. They found that the decrease
of T to below Tc � Nh̄v� ln2N strongly increases the
population of the ground state, which rapidly becomes
macroscopic. This sharp crossover originates from the dis-
crete structure of the trap levels and is not observed in qua-
siclassical calculations [21]. We argue that the presence of
the interparticle interaction changes the picture drastically.
One can distinguish between the (lowest) trap levels only
if the interaction between particles occupying a particular
level is much smaller than the level spacing. Otherwise,
the interparticle interaction smears out the discrete struc-
ture of the levels. For T close to Tc the occupation of the
ground state is �Tc�h̄v � N� ln2N [18] and, hence, the
mean-field interaction between the particles in this state
(per particle) is Ng�l ln2N . The sharp BEC crossover re-
quires this quantity to be much smaller than h̄v, and we
arrive at the condition N� ln2N ø a21. For a realistic
number of particles (N � 103 2 104) this is practically
equivalent to the condition at which one has the ideal gas
Gaussian condensate (see above).
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As we see, the sharp BEC crossover requires small a.
For possible realizations of 1D gases, using the coupling
constant g (1), we obtain a � 2al�l2

0 . Then, even for
the ratio l�l0 � 10 and moderate radial confinement with
l0 � 1 mm, we have a � 0.1 for Rb atoms (a � 50 Å).
Clearly, for a reasonably large number of particles the
crossover condition N ø a21 can be fulfilled only at ex-
tremely small interparticle interaction. One can think of
reducing a to below 1 Å and achieving a , 1023 by using
Feshbach resonances as in the MIT and JILA experiments
[22]. In this case one can expect the sharp BEC crossover
already for N � 103.

We now turn to the case of large a. For g ¿ 1 one has
a Tonks gas [1,23]. The one-to-one mapping of this system
to a gas of free fermions [2] ensures the fermionic spec-
trum and density profile of a trapped Tonks gas. For (axial)
harmonic trapping the condition g ¿ 1 requires N ø N�.
The chemical potential is equal to Nh̄v, and the density
distribution is n�z� � �

p
2N �pl�

p
1 2 �z�R�2, where the

size of the cloud R �
p

2Nl. The density profile n�z�
is different from both the profile of the zero-temperature
condensate and the classical distribution of particles, which
provides a root for identifying the trapped Tonks gas in ex-
periments. The interference effects and dynamical proper-
ties of this system are now a subject of theoretical studies
[24,25]. In Rb and Na this regime can be achieved for
N & 103 by the Feshbach increase of a to �500 Å and
using v � 1 Hz and v0 � 10 kHz (a � 50).

Large a and N satisfying Eq. (3), or small a and N ¿
a21, seem most feasible in experiments with trapped 1D
gases. In this case, at any T ø Td one has a weakly inter-
acting gas in the TF regime. Similarly to the uniform 1D
case, the decrease of temperature to below Td continuously
transforms a classical 1D gas to the regime of quantum
degeneracy. At T � 0 this weakly interacting gas turns to
the true TF condensate (see above). It is then subtle to
understand how the correlation properties change with
temperature at T ø Td . For this purpose, we analyze the
behavior of the one-particle density matrix by calculating
the fluctuations of the density and phase. We a priori as-
sume small density fluctuations and prove this statement
relying on the zero-temperature equations for the mean
density n0�z� and excitations. The operator of the den-
sity fluctuations is (see, e.g., [26])

n̂0�z� � n
1�2
0 �z�

X̀
j�1

if2
j �z�âj 1 H.c. , (4)

where âj is the annihilation operator of the excitation with
quantum number j and energy ej , f6

j � uj 6 yj , and
the u, y functions of the excitations are determined by
the same Bogolyubov–de Gennes equations [27] as in the
presence of the TF condensate.

The solution of these equations gives the spectrum ej �
h̄v

p
j� j 1 1��2 [20,28] and the wave functions
f6
j �x� �

µ
j 1 1�2

RTF

∂1�2
"

2m

ej
�1 2 x2�

#61�2

Pj�x� , (5)

where j is a positive integer, Pj are Legendre polynomials,
and x � z�RTF. For the mean square fluctuations of the
density, �dn̂2

zz0� � ��n̂0�z� 2 n̂0�z0�	2�, we have

�dn̂2
zz0�

n2
0m

�
X̀
j�1

ej� j 1 1�2�
2mn0mRTF

�Pj�x� 2 Pj�x0�	2�1 1 2Nj� ,

with Nj � �exp�ej�T � 2 1	21 being the occupation num-
bers for the excitations. At T ¿ h̄v the main contribu-
tion to the density fluctuations comes from quasiclassical
excitations ( j ¿ 1). The vacuum fluctuations are small:
�dn̂2

zz0�0 � n2
0mg1�2. For the thermal fluctuations on a dis-

tance scale jz 2 z0 j ¿ lc, we obtain

�dn2
zz0�T � n2

0m�T�Td� min
�T�m�, 1� . (6)

We see that the density fluctuations are strongly sup-
pressed at temperatures T ø Td . Then, one can write the
total field operator as ĉ�z� �

p
n0�z� exp�if̂�z�	, where

f̂�z� is the operator of the phase fluctuations, and the
one-particle density matrix takes the form (see, e.g., [11])

�ĉy�z�ĉ�z0�� �
p

n0�z�n0�z0� exp
2�df̂2
zz0��2� , (7)

with df̂zz0 � f̂�z� 2 f̂�z0�. The operator f̂�z� is given
by (see [26])

f̂�z� � �4n0�z�	21�2
X̀
j�1

f1
j �z�âj 1 H.c. , (8)

and for the mean square fluctuations we have

�df̂2
zz0� �

X̀
j�1

m� j 1 1�2�
2ejn0mRTF

�Pj�x� 2 Pj�x0�	2�1 1 2Nj� .

For the vacuum fluctuations we find (cf. [29,20])

�df̂2
zz0�0 � �g1�2�p� ln�jz 2 z0 j�lc� ,

and they are small for any realistic size of the gas cloud.
The thermal fluctuations of the phase are mostly provided
by the contribution of the lowest excitations. A direct
calculation, with Nj � T�ej , yields

�df̂2
zz0�T �

4Tm

3Tdh̄v

Ç
log

∑
�1 2 x0�
�1 1 x0�

�1 1 x�
�1 2 x�

∏ Ç
. (9)

In the inner part of the gas sample the logarithm in Eq. (9)
is of order unity.

Thus, we can introduce a characteristic temperature

Tph � Tdh̄v�m (10)

at which the quantity �df̂
2
zz0� � 1 on a distance scale jz 2

z0j � RTF. The characteristic radius of phase fluctuations
is Rf � RTF�Tph�T � ~ N2�3�T , and for T , Tph it ex-
ceeds the sample size RTF. This means that at T ø Tph

both the density and phase fluctuations are suppressed, and
there is a true condensate. The condition (3) always pro-
vides the ratio Tph�h̄v � �4N�a2�1�3 ¿ 1.
3747
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In the temperature range, where Td ¿ T ¿ Tph, the
density fluctuations are suppressed, but the phase fluctuates
on a distance scale Rf ø RTF. Thus, similarly to the
quasi-2D case [30], we have a condensate with fluctu-
ating phase (quasicondensate). The radius of the phase
fluctuations greatly exceeds the correlation length: Rf �
lc�Td�T � ¿ lc. Hence, the quasicondensate has the same
density profile as the true condensate. Correlation proper-
ties at distances smaller than Rf are also the same. How-
ever, the phase fluctuations lead to a drastic difference in
the phase coherence properties.

In Fig. 1, we present the state diagram of the trapped
1D gas for a � 10 (N� � 100). For N ¿ N�, the de-
crease of temperature to below Td leads to the appearance
of a quasicondensate which at T , Tph turns to the true
condensate. In the T -N plane the approximate borderline
between the two BEC regimes is determined by the equa-
tion �T�h̄v� � �32N�9N��1�3. For N , N� the system
can be regarded as a trapped Tonks gas (cf. [31]).

Phase coherence properties of trapped 1D gases can be
studied in “juggling” experiments similar to those with 3D
condensates at NIST and Munich [32,33]. Small clouds
of atoms are ejected from the main cloud by stimulated
Raman or rf transitions. Observing the interference be-
tween two clouds, simultaneously ejected from different
parts of the sample, allows the reconstruction of the spa-
tial phase correlation properties. Similarly, temporal cor-
relations of the phase can be studied by overlapping clouds
ejected at different times from the same part of the sample.
In this way juggling experiments provide a direct mea-
surement of the one-particle density matrix. Repeatedly
juggling clouds of a small volume V from points z and
z0 of the sample, for equal time of flight to the detec-
tor we have the averaged detection signal I � V�n0�z� 1

n0�z0� 1 2�ĉy�z�c�z0��	.
At T ø Tph the phase fluctuations are small and one

has a true condensate. In this case, for z0 � 2z we have
�ĉy�z�ĉ�z0�� � n0�z� and I � 4Vn0�z�, and there is a
pronounced interference effect: The detected signal is
twice as large as the number of atoms in the ejected clouds.

FIG. 1. Diagram of states for a trapped 1D gas.
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The phase fluctuations grow with T and for T . Tph,
where the true condensate turns to a quasicondensate; the
detection signal decreases as described by �ĉy�z�ĉ�z0��
from Eqs. (7) and (9). For T ¿ Tph the phase fluctua-
tions completely destroy the interference between the two
ejected clouds, and I � 2Vn0�z�.

In conclusion, we have identified three regimes of quan-
tum degeneracy in a trapped 1D gas: the BEC regimes of
a quasicondensate and true condensate, and the regime of
a trapped Tonks gas. The creation of 1D gases will open
handles on interesting phase coherence studies and on the
studies of “fermionization” in Bose systems.
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