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Large Nonlinear Dynamical Response of Superparamagnets: Interplay between Precession
and Thermoactivation in the Stochastic Landau-Lifshitz Equation
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The nonlinear dynamical response of classical spins governed by the stochastic Landau-Lifshitz equa-
tion is found to be large and very sensitive to the damping in the medium-to-weak damping regime.
This result is interpreted in terms of a cooperation, induced by the driving field, between the precession
of the spin and its thermoactivation over the potential barrier. The large damping dependence (absent in
the linear response) can be used to determine the evasive damping coefficient in superparamagnets, so
clarifying the nature of the spin-environment interaction in these systems.

PACS numbers: 75.10.Hk, 05.45.–a, 75.50.Tt, 76.20.+q
The Landau-Lifshitz equation for the dynamics of classi-
cal spins [1] is an important equation in nonlinear physics,
possessing a rich variety of exact solutions and being a
practically inexhaustible object for numerical analysis. In
statistical physics, its stochastic partner (or, equivalently,
the associated Fokker-Planck equation) is the minimal tool
for the study of noninertial Brownian rotation of dipoles
(much as the original Langevin equation is to ordinary
Brownian motion). For instance, it constitutes the start-
ing point in the efforts to extend Kramers’ theory of ther-
moactivated barrier crossing to such rotational systems. In
addition, if an oscillating field is included, one can find
what in modern jargon is called “stochastic resonance” but
in rotationally multistable potentials.

This equation also plays an important role in condensed
matter physics, being used to describe a variety of elec-
tric and magnetic phenomena. For instance, the equa-
tions underlying the Debye theory of noninertial dielectric
relaxation can formally be obtained from the stochastic
Landau-Lifshitz equation in the limit of zero precession.
In magnetism, the Landau-Lifshitz equation describes spin
dynamics in classical XY and Heisenberg models, thin
films, and superparamagnets (nanoscale solids or clusters
whose net spin S � 102 105 rotates thermally activated
in the anisotropy potential). Furthermore, the Landau-
Lifshitz equation may provide an approximate description
of high spin (S � 10) magnetic molecular clusters; it can
also be used to incorporate finite-temperature effects in
first principles calculations, and it is employed as well
in modeling of technological applications as information
storage and processing devices.

The study of the linear response associated with the sto-
chastic Landau-Lifshitz equation goes back to the above-
mentioned Debye theory of dielectric relaxation, and is to
some extent an established subject in superparamagnets.
The extension of these studies to the nonlinear response
is important in both the context of the general progress in
nonlinear physics and on account of the greater sensitiv-
ity of the nonlinear susceptibilities (or hyperpolarizabili-
ties) to important characteristics of the underlying system.
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Because of its relative complexity, however, this field has
progressed at a slower pace.

The rigorous derivation of the nonlinear dynamical
susceptibility of isotropic dipoles was carried out in the
context of the Debye theory by Coffey and Paranjape [2].
Further developments included the study of anisotropically
polarizable molecules and the effects of strong superim-
posed electric fields [3,4]. The corresponding problem
in magnetism has been addressed [5] under the assump-
tions of uniaxial magnetic anisotropy and overdamped
dynamics (precession term disregarded) [6]. Such a
simple symmetry of the anisotropy potential, recently con-
firmed in an important nanoparticle system [7], suffices
to shed some light on this complex dynamical problem.
In contrast, although the damping coefficient l is poorly
known, the most reliable determinations [8] indicate that
it lies in the medium or weak damping regimes (l �
0.5 0.01). Moreover, the intrinsic temperature or field
dependences of l [9,10] could bring the system from one
damping regime to another. Nevertheless, an investigation
of the role of arbitrary damping in this problem is still
lacking.

To fill this gap in our knowledge of the dynamics of
the stochastic Landau-Lifshitz equation, in this article
we study the nonlinear response of spins governed by
this equation, fully accounting for the spin precession.
We obtain an unexpectedly large dependence of the low-
frequency nonlinear susceptibility on the damping coeffi-
cient, due to the interplay between the precession of the
spin and its thermoactivation over the anisotropy barrier.
Such a sensitivity to the damping coefficient, which has no
analog in the low-frequency linear response, suggests that
l can experimentally be extracted from the nonlinear sus-
ceptibility. This would facilitate the determination of the
intrinsic dependences of the damping in superparamagnets
(and congeneric systems), thus clarifying its microscopic
origin.

Let us begin with a brief discussion of the dynamics
of a subsystem of interest (a spin in our case) accounting
for its interaction with the surrounding “medium” (lattice
© 2000 The American Physical Society



VOLUME 85, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 OCTOBER 2000
vibrations, conduction electrons, nuclear spins, etc.). In a
variety of systems, this interaction, after the elimination
of the explicit dependences on the environment dynamical
variables, can be separated into a time-dependent modu-
lation of the subsystem by the proper modes of the envi-
ronment (fluctuating term), and the back reaction on the
subsystem of its action on the surrounding medium (relax-
ation or damping term). This approach was particularized
phenomenologically by Brown [11] and Kubo and Hashit-
sume [12] to classical spins (superparamagnets), by intro-
ducing the stochastic Landau-Lifshitz equation:

1
g

d �S
dt

� �S ^ � �Beff 1 �bfl�t�� 2
l

S
�S ^ � �S ^ �Beff� . (1)

In this (Stratonovich) stochastic differential equation,
�Beff � 2≠H �≠ �S is the deterministic effective field, the
double vector product is the damping term, which rotates
�S towards the potential minima (preserving j �Sj), and
�bfl�t� is a fluctuating field with white noise properties:
�bfl,i�t�� � 0, �bfl,i�t�bfl,j�t0�� �
2lkBT

gS
dijd�t 2 t0� .

The dimensionless damping coefficient l measures the
relative importance of the relaxation and precession terms
and controls the intensity of the fluctuations (so that
fluctuation-dissipation relations are obeyed).

For dipoles with the simplest uniaxial magnetic
anisotropy in an arbitrarily directed driving field D �B�t�,
the Hamiltonian reads

H � 2D�Sz�S�2 2 �S ? D �B�t� .

The anisotropy term has two minima at Sz � 6S (the
“poles”) with a barrier between them at Sz � 0 (the
“equator”). Let us introduce the spherical harmonics
Xm

� �z, w� � eimwPm
� �z�, where z � Sz�S and w is the

azimuth of �S. The dynamical equations for the Xm
� ,

averaged over realizations of the fluctuating field, can
be obtained directly from Eq. (1) [13] and constitute an
infinite system of coupled equations:
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Here, s � D�kBT , D �j � SD �B�kBT , Dj6 � Djx 6

iDjy , and tD is the relaxation time in the isotropic
(s ! 0) limit (the counterpart of the Debye time in
dielectrics)

tD �
1
l

S
2gkBT

. (3)

If the Gilbert form is used instead of Eq. (1), one has only
to replace l by l��1 1 l2� in tD.
The equations for the Xm
� can be solved perturbatively

in D �B [5]. The right-hand side of Eq. (2), at a specific
order, will be a given function of time depending on the
results of the preceding order [denoted by Fm

� �t�]. Then,
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the equations for the Xm
� can be cast into the form of an

inhomogeneous three-term differential-recurrence relation
(in the index � with fixed m):

2tD
dC�

dt
1 Q2

� C�21 1 Q�C� 1 Q1
� C�11 � F��t� .

This type of equation can efficiently be solved by us-
ing matrix continued fraction methods [14]. Then, the
average dipole moment (response) of the system is ob-
tained via �Sz��S � X0

1 and �Sx 1 iSy��S � X1
1 . Finally,

in the presence of an oscillating driving field Dj�t� �
1
2Dj�e1iVt 1 e2iVt�, the time-dependent part of the field
projection (� �S� ? D �B�DB) of the stationary response can
be expanded in Fourier series as follows:

DM�t� �
X̀
k�1

µ
DB
2

∂k

�x �k�e1ikVt 1 x �k��e2ikVt� ,

which defines the linear x �1��V� (or simply x) and non-
linear susceptibilities x �k��V�, k � 2, 3 . . . .

In the absence of a bias field, the leading nonlinear term
is x �3�, henceforth referred to as the nonlinear suscepti-
bility. Figure 1 displays the “low-frequency” (VtD & 1)
nonlinear susceptibility spectra of an ensemble of spins
with collinear anisotropy axes and driving field parallel
and perpendicular to the axes. The features of x

�3�
k �V�

are qualitatively similar to those in the isotropic dipole
case [2]: the real part x

�3�0
k equals the thermal-equilibrium

susceptibility at low V, then it decreases with increasing
V, changes sign, exhibits a peak, and finally tends to
zero at high frequencies. The imaginary part, x
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FIG. 1. Longitudinal (solid lines) and transverse (dotted lines)
nonlinear susceptibility spectra of classical spins with collinear
anisotropy axes at the temperature kBT�D � 0.05 (s � 20).
Inset: Linear susceptibility of spins with randomly distributed
anisotropy axes. In both cases, results for different values of the
damping coefficient l (1, 0.1, 0.03, and 0.01) are displayed to
show their coincidence. The susceptibilities have been divided
by their equilibrium values, to single out variations due to dy-
namical effects.
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is approximately traced by the logarithmic derivative
2�p�2� �≠x

�3�0
k �≠ logV�. Concerning the transverse re-

sponse, it is dominated by fast (�tD) intra-potential-well
relaxation modes, so that x

�3�
� �V� practically coincides

with the corresponding equilibrium susceptibility in the
whole VtD & 1 range. Note that, when present, the
peaks of the susceptibility curves always have heights
that are a fraction of the equilibrium x �3�. Note also
that the susceptibilities are independent of the damping
coefficient, or rather, l enters only through the isotropic
relaxation time tD [Eq. (3)] shifting the curves along
the frequency axis, and this dependence collapses onto
a single master curve when representing the spectra as a
function of the natural variable VtD.

Let us now turn our attention to the more general situ-
ation of a driving field at an oblique angle to the anisotropy
axis. Although the linear response to such a field is a linear
combination of the longitudinal and transverse suscepti-
bilities, additional terms appear in the nonlinear response.
Figure 2 displays x �3��V� in the experimentally most com-
mon case of anisotropy axes distributed at random. Note
the large dependence of x �3� on l, a dependence that was
absent in both the linear susceptibility for the same axes
distribution (inset of Fig. 1), as well as in the longitu-
dinal and transverse nonlinear susceptibilities themselves
(Fig. 1). Note also that, in this case, the heights of the
susceptibility peaks are by no means only a fraction of the
equilibrium values.

In order to interpret physically these results, it is conve-
nient to rewrite the Landau-Lifshitz equation (1) with the
time measured in units of tD, so that the frequency shift
of the spectra is scaled out. In this representation, both
the relaxation and the fluctuating terms become indepen-
dent of l, which enters only as a factor 1�l multiplying
the deterministic precession term. The dependence of x �3�

on l can then be interpreted as the result of the time-
dependent saddle point created by the oblique driving field
in the anisotropy potential barrier. This saddle favors
inter-potential-well jumps [15] that would be unlikely if
the field were in the linear range (weakly deformed bar-
rier), and, hence, leads to an increase of the magnitude of
the response. To illustrate, let us assume that the spin, after
a “favorable” sequence of fluctuations, reaches a point
P close to the top of the barrier but does not cross it
[inset of Fig. 2(b)]. In the subsequent spiralling down back
to the bottom of the potential well, a weakly damped spin
executes more rotations (�1�l) about the anisotropy axis,
so that it can approach the saddle area created by DB��t�
(shaded area in that inset), where the probability of over-
barrier crossing is larger.

We can see that the precession-assisted barrier cross-
ing picture is consistent with the results obtained: (i) The
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FIG. 2. Nonlinear susceptibility spectra (normalized by the
equilibrium susceptibility) of classical spins with randomly dis-
tributed anisotropy axes at the temperature kBT�D � 0.05 (s �
20), for various values of the damping coefficient l ranging from
the overdamped to the underdamped regime. (a) Real part x �3�0

(inset: results for l � 0.01 at various temperatures). (b) Imagi-
nary part x �3�00 (inset: top view of the deterministic decaying
trajectories during a time interval tD�s for various l; shaded
area: region with a temporarily lower barrier due to the driving
field).

effect is naturally absent if there is no anisotropy barrier
to be modified (as it follows from the analytical expres-
sion for x �3� of isotropic dipoles [2]). (ii) The coupling
mechanism is not effective if the barrier is weakly per-
turbed (independence of the linear response on l; inset
of Fig. 1). (iii) The effect is absent if the driving field is
either exactly parallel to the anisotropy axis (DB� � 0),
since the barrier is then modified the same amount every-
where, or exactly perpendicular, since the barrier cross-
ing plays a secondary dynamical role in the transverse
projection of the response (dominated by the fast intra-
potential-well modes). (iv) The relevance of the mecha-
nism increases with decreasing l, as the efficiency of the
precession to bring the spins close to the saddle is then
larger [inset of Fig. 2(b)]. (v) The effect is magnified by
the temperature [inset of Fig. 2(a)], as the “energy levels”
(orbits) close to the top of the barrier are thermally more
populated.
The dependence of x �3� on l can be used to determine
l experimentally, avoiding the methods in which l is ex-
tracted from the preexponential factor t0 (~ tD) in the re-
laxation time t of uniaxial spins. This is important since
(i) t0 is typically obtained from the analysis of the position
of the peaks of the x vs T curves, so that what one gets
is an average of l over the temperature range involved;
(ii) the errors in the determination of t0 are frequently at
the level of order of magnitude. In contrast, the depen-
dence of x �3� on l does not rely on that of tD, circum-
venting the above-mentioned problems. In particular, l

can be found at different temperatures, allowing the study
of its intrinsic dependence on T .

In summary, we have investigated the effect of the
damping on the nonlinear dynamical response of spins
governed by the stochastic Landau-Lifshitz equation. It
has been found that the coupling of the thermoactivated
overbarrier dynamics with the precession of the spin,
via the driving field, leads to a large dependence (absent
in the linear response) of the nonlinear susceptibility on
the damping coefficient. We can confidently conjecture
the existence of this effect in more complex systems
(interacting spins, other symmetries of the anisotropy,
etc.), as long as the essential ingredients —precession,
potential barrier, and strong driving field — are present.
The dependence found is, moreover, larger in the impor-
tant medium-to-weak damping regime. Exploiting it, the
evasive damping coefficient in superparamagnets could be
determined, clarifying the mechanisms coupling the spin
to the internal degrees of freedom.
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