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Negative Length Orbits in Normal-Superconductor Billiard Systems
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The path-length spectra of mesoscopic systems including diffractive scatterers and connected to a
superconductor are studied theoretically. We show that the spectra differ fundamentally from that of
normal systems due to the presence of Andreev reflection. It is shown that negative path lengths should
arise in the spectra as opposed to the normal system. To highlight this effect we carried out both
quantum mechanical and semiclassical calculations for the simplest possible diffractive scatterer. The
most pronounced peaks in the path-length spectra of the reflection amplitude are identified by the routes
that the electron and/or hole travels.

PACS numbers: 74.50.+r, 03.65.Sq
In recent years, semiclassical methods have become a
popular tool for describing devices operating in the meso-
scopic regime. Advances in manufacturing and material
design have made possible the creation of clean meso-
scopic devices, whose properties depend on the micro-
scopic details of individual samples. For example, in recent
experiments [1,2] involving semiconductor microjunc-
tions, both the quantum coherence length and the mean free
path of elastic collisions are large compared to the size of
the junction. In such devices electrons can be described as
a two-dimensional ideal Fermi gas of noninteracting par-
ticles. The conductance of such junctions has been mea-
sured and found to oscillate strongly as the Fermi energy
is varied.

Semiclassical methods have proved to be very effective
for understanding conductance fluctuations in normal mi-
crojunctions. On the one hand, methods based on random
matrix theory [3–5] successfully predict statistical proper-
ties of transport properties. On the other, short-wavelength
semiclassical descriptions are able to explore geometry-
induced interference effects in weakly disordered or clean
mesoscopic devices. In particular, it has been shown that
the path-length spectra (PLS), defined as the power spec-
trum of the reflection (transmission) amplitudes with re-
spect to the Fermi wavelength,

r̂mn�L� �

Ç Z kmax

kmin

e2ikFLrmn�kF� dkF

Ç2
, (1)

possess peaks at lengths corresponding to classical tra-
jectories of electrons starting and ending at the external
contacts [6–12]. Here rmn�kF� [tmn�kF�] is the reflection
(transmission) amplitude at the Fermi wave number kF

for scattering from mode n of the entrance lead to mode
m of the entrance (exit) lead in a two probe conductance
measurement.

Mesoscopic devices connected to a superconduc-
tor present a new challenge for semiclassics. In such
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normal-superconductor (NS) systems Andreev reflection
[5,13–15] plays an important role, whereby electrons at
the Fermi energy in the normal metal are retroreflected
as holes at the NS interface. Such a process might be
expected to dramatically affect the PLS, but to date,
no investigations of the PLS in NS systems have been
carried out.

In this Letter we present the first such investigation, by
examining a mesoscopic device connected to a supercon-
ductor and show that the PLS of NS systems differ from
those of normal systems in a fundamental way. In particu-
lar, for NS systems containing diffractive scatters, negative
path lengths can arise in the PLS which are absent from
the corresponding normal systems.

Before turning to the NS system we shortly discuss the
role of diffraction in the PLS of normal systems, follow-
ing Ref. [16]. In the semiclassical approximation, par-
ticles hitting a diffractive scatterer may scatter in any
direction since the classical dynamics is not uniquely de-
fined [17,18]. In Ref. [16] a two-dimensional waveguide
with a small pointlike diffractive scatterer has been ana-
lyzed [19] (see Fig. 1a). It has been shown that the PLS of
the reflection amplitude rnm has peaks at path lengths cor-
responding to classical trajectories starting and returning to
the entrance of the lead, either diffracted once or several
times by the scatterer. At large Fermi wavelengths a typi-
cal trajectory with multiple bounces is shown in Fig. 1a.
Such trajectories consist of two parts: segments (along
the z axis) connecting the lead and the scatterer with total
length 2 3 z0, and multiple diffraction trajectories starting
and ending on the scatterer. A multiple diffraction trajec-
tory can be decomposed into loops that start and end on
the scatterer, making bounces on the walls of the wave-
guide. The possible lengths of the loops are

lr �

8<
:

2Wr ,
2x0 1 2Wr ,
2�W 2 x0� 1 2Wr ,

(2)
© 2000 The American Physical Society



VOLUME 85, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 OCTOBER 2000
FIG. 1. The waveguide with pointlike diffractive scatterer
(a) opened and (b) a superconductor attached to the exit lead
(left side of the waveguide). The origin of the coordinate
system �z, x� is at the bottom left corner of the waveguide. In
(a) one possible trajectory is shown. For clarity the forward
and backward paths are shifted.

where r � 0, 1, 2, . . . is the repetition number and W is the
width of the waveguide [16].

In Fig. 2 the PLS calculated quantum mechanically and
semiclassically using the method developed in Ref. [16]
are shown. One can see that the agreement between the
quantum and the semiclassical calculation is excellent and
the peaks are located at lengths which are linear combina-
tions of (2) plus 2z0. It is obvious that the PLS have peaks
only for positive lengths L. The amplitude of the peaks
is decreased by multiple diffraction and therefore the most
pronounced peaks correspond to paths diffracted only once
on the scatterer.
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FIG. 2. The PLS of the reflection amplitude defined by Eq. (1)
are obtained from quantum mechanical and semiclassical calcu-
lations. The width of the waveguide, W � 1.0. The strength of
the Dirac delta potential, l � 10.0, and its position is located
at �z0, x0� � �0.5, 0.7�.
Now consider the effect of replacing one of the exit
leads by a superconductor. In this case a new contribu-
tion to the reflection amplitude rmn has to be taken into
account, namely, the one coming from Andreev reflection
at the NS interface. By solving the Bogoliubov–de Gennes
equation for a NS interface it is possible to show that, at
the Fermi energy, electronlike excitations impinging onto
the superconducting interface are coherently retroreflected
as holelike excitations. In a semiclassical description, the
classical action associated with the path connecting points
q0 and q00 is given by

S�q0, q00� �
Z q00

q0

p�q� dq , (3)

where p�q� is the momentum of the electron or the hole
along the path (note that if the path touches the supercon-
ductor at least once, it will contain both electron and hole
parts). In particular, the action associated with an Andreev
reflection process in which an electron starting at point q0

returns to the same point as a hole can be written as

S�q0, q0� � kFL�q0, q�� 2 kFL�q�, q0� � 0 , (4)

where L�q0, q�� denotes the length of the path of the elec-
tron until it hits the superconductor at q� and L�q�, q0� is
the path length of the hole from q� to q0 [20]. The minus
sign in the second term is due to the fact that the direc-
tions of the momentum and the velocity of the hole are
opposite. The total action of an electron-hole (e-h) trajec-
tory returning to its starting point is always zero, since the
hole retraces the path of the electron. As a consequence
of this result, the PLS of the reflection amplitude for
electron-electron (e-e) have peaks at positive lengths L
while for e-h it has a pronounced peak at L � 0.

We now consider the case where diffractive scattering
is possible in the system (Fig. 1b). The new feature is
that the trajectory of electrons or holes hitting a diffractive
point is not uniquely defined. Therefore, a hole retracing
an electron, which scattered on a diffractive center, will not
necessarily retrace the trajectory of the electron beyond the
diffractive center. The hole may leave the diffraction cen-
ter at a different angle than that of the incident electron.
This effect has already been pointed out by Beenakker [21]
in connection with a normal-metal-superconductor junc-
tion containing a point contact. Consequently, in the pres-
ence of diffraction, complicated trajectories consisting of
several electron and hole segments may arise. The classi-
cal action for this case can be written as a sum of actions
of the segments

S �
X

kF�6Li� , (5)

where Li is the length of the segment i and the 1 or 2

corresponds to cases when electron or hole traverses the
segment i, respectively. Unlike in the diffractionless case,
the sum of positive and negative terms in Eq. (5) is not
necessarily zero. Moreover, the total length of the hole
segments may exceed those of the electrons. Thus, in
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the PLS of the e-e reflection amplitude, peaks at negative
lengths may appear, which are completely absent from the
PLS of the corresponding normal systems.

To observe negative lengths in the PLS we note that
when the exit lead is replaced by a superconductor [5] the
e-e reflection amplitude can be expressed in terms of the
transmission and reflection amplitudes of the correspond-
ing normal system (see Eq. 266a in Ref. [5]). For the sys-
tem of Fig. 1b, the latter amplitudes have been derived in
Ref. [16] and, after lengthy but straightforward algebra,
we find the following expression for the n, m matrix ele-
ment of the e-e reflection amplitude at the Fermi energy:

se-e
nm �kF� �

2rnm�kF�
1 1 jD j2�ImG0�x0, z0 j x0, z0��2 , (6)

where rnm�kF� is the matrix of reflection amplitudes of the
normal system [16] for the entrance lead; G0�x, z j x0, z0�
is the Green’s function of the empty waveguide. D �
2il̃��1 2 l̃G0�x0, z0 j x0, z0�� can be regarded as the
diffraction constant of the scatterer, where l̃ is the
renormalized strength of the scatterer [22].

On the upper part of Fig. 3 the PLS of the reflection
amplitude of (6) (the exact quantum mechanical result)
are plotted as a function of the path length. Peaks at
negative path lengths are clearly visible here as opposed
to the normal system shown in Fig. 2.

The semiclassical approximation of Eq. (6) can be ob-
tained from the semiclassical form of the Green’s function
which is given by

G0�x0, z0 j x0, z0� �
X �21�nr

p
8pkFlr

eikFlr2i3p�4, (7)

where the summation is over all possible loops with lengths
lr given in (2) and nr is the number of bounces on the walls
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FIG. 3. The PLS of the reflection amplitude se-e
11 �kF� [see

Eq. (6)] are obtained from quantum and semiclassical calcula-
tions. For parameters see Fig. 2.
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of the waveguide. One can see that ImG0�x0, z0 j x0, z0�
will contain the complex conjugate of Eq. (7) and is there-
fore a sum with terms proportional to e6ikFlr . Here, terms
with e2ikFlr correspond to loops traversed by holes. The
e-e reflection amplitude given in (6) can be rewritten as a
multiple diffraction series:

se-e
nm �kF� � 2rnm�kF� �1 2 jD j2�ImG0�x0, z0 j x0, z0��2

1 jD j4�ImG0�x0, z0 j x0, z0��4 . . .� .
(8)

Expressing powers of ImG0 with Eq. (7) and its complex
conjugate se-e

nm �kF� can be written as an oscillating sum

se-e
nm �kF� �

X
j

Aje
iSj , (9)

where Sj is of the form of Eq. (5). The amplitudes Aj

can be determined exactly by using the above formulas.
In the lower part of Fig. 3 the PLS of the reflection
amplitude se-e

nm �kF� are plotted using Eq. (9). Again one
can see a very good agreement between the quantum and
semiclassical calculations. The most pronounced peaks
with negative lengths (see Fig. 4) come from the family
L � 2z0 2 lr , where lr is given in Eq. (2), namely,
L � 20.4, 21.0, 21.6, 22.4, 23.0, 23.6, 24.4, 25, . . . .
These lengths can be associated with the following
routes: First the electron hits the superconductor, then the
retroreflected hole diffracts on the scatterer and makes a
loop with repetition number r as described before Eq. (2).
Next, the hole diffracts off the scatterer, then hits the
superconductor on which it converts back to an electron.
Finally, the electron goes back to the entrance lead.
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FIG. 4. The PLS of the reflection amplitude r11�kF� of the
normal system (lower part) and se-e

11 �kF� given in Eq. (6)
(upper part) are plotted. The most pronounced peaks with
negative lengths come from the family L � 2z0 2 lr , where
lr is given in Eq. (2), namely, L � 20.4, 21.0, 21.6, 22.4,
23.0, 23.6, 24.4, 25, . . . . For parameters see Fig. 2.
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The above results represent the first theoretical study of
the path-length spectra of a normal-superconductor meso-
scopic system with diffractive scattering. We have demon-
strated that the PLS of such systems differ fundamentally
from that of normal systems, due to the appearance of
peaks at negative lengths. To highlight this effect, we have
analyzed the simplest possible diffractive scatterer. Since
the appearance of negative lengths in PLS is the direct
consequence of the presence of diffractive scatterers it is
desirable to study other types of diffractive centers such as
corners. There is a growing interest in studying the role of
diffractive scatterers in normal mesoscopic systems [23],
therefore the extension to normal-superconductor systems
may become a new playground both in the semiclassical
theory of scattering processes and level statistics of these
systems. Regarding relevant experiments, we mention the
work of Morpurgo et al. [24] where phase conjugated tra-
jectories on which a hole traces the path of the electron
back to the emitting point contact have been found. We
believe that a similar experiment with an additional diffrac-
tive scatterer can be proposed where the effect discussed in
our paper should be observable. We should mention that
the presence of the negative PLS is robust against slight
deviations from our setup such as nonperfect Andreev re-
flection [25]. For the future it will also be of interest to ex-
amine the amplitudes of the negative length peaks in more
complex geometries, such as those of [15], to examine the
effect of a tunnel junction at the NS interface and the role
of order parameter symmetry.
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