
VOLUME 85, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 23 OCTOBER 2000

3692
Tunneling Density of States of High Tc Superconductors:
d-Wave BCS Model versus SU(2) Slave-Boson Model

Walter Rantner and Xiao-Gang Wen
Department of Physics, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
(Received 22 May 2000)

Motivated by recent experimental measurements of the tunneling characteristics of high Tc materials
using scanning tunneling spectroscopy, we have calculated the I-V and differential conductance curves in
the superconducting state at zero temperature. Comparing BCS-like d-wave pairing and the SU(2) slave-
boson approach, we find that the slave-boson model can explain the asymmetric background observed
in experiments. The slave-boson model also predicts that the height of the conductance peak relative to
the background is proportional to the hole doping concentration x, at least for underdoped samples. We
also observe the absence of the van Hove singularity, and comment on possible implications.

PACS numbers: 74.20.Mn, 74.25.Jb, 74.50.+r
I. Introduction.—Tunneling spectroscopy has been one
of the fundamental tools in studying the superconduct-
ing state of the high Tc materials. In recent years it has
been possible to use the scanning tunneling microscope
(STM) to perform reproducible experiments on single crys-
tal Bi2Sr2CaCu2O81d cleaved in ultrahigh vacuum [1,2].
In contrast to photoemission experiments, which are local
probes in wave-vector space, the STM is local in real space.
Thus it does not provide any information that depends on
momentum, however, it has much higher energy resolution.
The density of states (DOS) obtained from the dI

dV curve is a
direct fingerprint of the single particle microscopic physics
in the material and hence of some importance in constrain-
ing the possible theoretical models explaining the elusive
high Tc physics.

The STM spectra for the superconducting phase exhibit
unusual structure in the DOS when viewed in light of the
Bardeen-Cooper-Schrieffer (BCS) theory even if effects
such as energy dependence of the normal state density of
states of sample and/or tip, existence of bandwidth cutoffs,
unequal work functions of tip and sample, and energy-
dependent transmission probabilities are included [3]. One
notable feature in the tunneling spectra is the asymmetric
background with an enhancement for hole tunneling into
the sample. This feature is reproduced very well in our cal-
culation based on the slave-boson theory. The slave-boson
model also predicts that the strength of the background
in the tunneling spectra does not scale with the doping x
while the sharp conductance peak scales linearly with x.
Thus, by measuring the relative strength of the background
and the sharp conductance peak as a function of doping x,
one can distinguish the BCS theory and the slave-boson
theory experimentally.

We also observe the absence of the van Hove singular-
ity, and comment on possible implications. One possible
implication is particularly intriguing and consistent with
photoemission results. That is the quasiparticles have a
long lifetime, t . 0.5 meV, below the superconducting
0031-9007�00�85(17)�3692(4)$15.00
gap, and a very short lifetime, t , 0.05 meV (spin-charge
separation) above the superconducting gap.

II. d-wave BCS.—The differential conductance dI
dV dis-

plays, in the simplest case of constant DOS in the tip and
energy-independent transition probability, the single elec-
tron DOS in the sample. This reflects the ability of the
material to accommodate an extra electron or hole depend-
ing on the sample bias. Within the tunneling Hamiltonian
formalism the tunneling current is given by [4]

jT � 4peG2
X
k,p

Z
dv �AL2�v, p�AR1�v 1 V , k�

2 AL1�v, p�AR2�v 1 V , k�� ,
(1)

where the AL’s and AR’s are the spectral functions for the
single electron Green’s functions in the tip �L� and sample
�R�, respectively. V denotes the bias of the sample with
respect to the tip and G is the tunneling matrix element
assumed independent of energy. Notice that positive V cor-
responds to e2 tunneling into the sample.

For a free fermion system, which we suppose to rep-
resent the tip material, we have the standard form for
the spectral function at zero temperature AL1�v, p� �
Q�v�d�v 2 jp� and AL2�v, p� � Q�2v�d�v 2 jp�,
where jp � ep 2 EF denotes the particle spectrum in the
tip with EF the Fermi energy. Q�v� is the Heaviside step
function, where v is measured with respect to the Fermi
energy.

For the sample, we first consider the following single
particle spectral distribution at zero temperature:

AR1�v, p� � Q�v�u2�p�d�v 2 Ep� ,

AR2�v, p� � Q�2v�y2�p�d�v 1 Ep� ,
(2)

where u2�p� � 1
2 �1 1

jp

Ep
� and y2�p� � 1

2 �1 2
jp

Ep
�

are the BCS coherence factors, Ep �
q

j2
p 1 D2

p is the
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dispersion relation of the quasiparticles in the supercon-
ducting state, and jp � ep 2 EF with ep the dispersion
relation in the normal state. Here Dp denotes the gap
function which is taken to have a d-wave symmetry in
reciprocal space. Within the above approximation to the
spectral functions, we obtain the following expressions
for the single particle tunneling current:
jT jV.0 � 4epG2N�EF�
X

k,E�k�#V

u2�k� ,

jT jV,0 � 24epG2N�EF�
X

k,E�k�#jV j

y2�k� .

Figure 1 plots the resulting differential conductance
curve. With
jk � t0 1 t1�coskx 1 cosky� 1 t2�coskx cosky� 1 t3�cos2kx 1 cos2ky�
1 t4�cos2kx cosky 1 cos2ky coskx� 1 t5�cos2kx cos2ky� 2 EF
as the dispersion relation for the quasiparticles in the ab
plane of the sample and the matrix elements chosen as
follows �t0, . . . , t5� � �0.1305, 20.2976, 0.1636, 20.026,
20.0559, 0.051� in eV, this is a tight binding fit to angle-
resolved photoemission spectroscopy (ARPES) mea-
surements performed by Norman et al. [5]. EF has been
adjusted to yield 10% hole doping, and Dk � D0�coskx 2

cosky� (with D0 � 22 meV) has the d-wave k-space sym-
metry mentioned previously.

With the hole doping at 10%, the van Hove singularity,
present in the band structure, ends up on the hole side of
the DOS very close to the Fermi energy. The fact that
the van Hove singularity is close to the Fermi surface and
hence should show up in the low energy single particle
physics can be seen nicely in Fig. 1 in the form of the
double peak structure. The coherence factors which mix
particle and hole density of states lead to the van Hove
singularity also showing up on the particle side of the dI

dV
curve, albeit with much smaller amplitude.
III. Slave bosons.—Next we consider the tunneling
problem in light of the SU(2) slave-boson theory of Wen
and Lee [6]. It is commonly believed that the simplest
model that incorporates the strong correlation physics
relevant for the high Tc cuprates is the t-J model. Be-
cause of the strong on-site Coulomb repulsion energy the
doubly occupied states should not contribute to the low
energy effective theory. Within the SU(2) approach this
constraint is implemented via the introduction of a slave-
boson doublet. The physical electron operator can then be
written as an SU(2) singlet. Within this representation, the
mean-field electron propagator is given by the product of
the boson and the fermion propagators and was calculated
in Ref. [7].

For our purpose we need only the T � 0 spectral func-
tions which can be read off from the expression for the
Green’s function as

AR1�v, k� � Q�v�
Ω

x
2

u2
f�k�d�v 2 Ef �k��

æ
for the particle part and
AR2�v, k� � Q�2v�

(
x
2

y2
f�k�d�v 1 Ef �k��

1
1

2N

X
q

�ub�q 2 k�uf �q� 1 yb�q 2 k�yf�q��2d�v 1 Ef�q� 1 Eb
2�q 2 k��

1
1

2N

X
q

�ub�q 2 k�yf�q� 2 yb�q 2 k�uf �q��2d�v 1 Ef�q� 1 Eb
1�q 2 k��

)
(3)
for the hole part of the spectrum. Here N denotes the
number of sites and x is the hole doping concentra-
tion. The remaining variables are defined as follows:

uf,b�k� � 1
2

q
1 1

e�k�f ,b

jEf,b j , yf,b�k� � 1
2

Df,b �k�
jDf,b �k�j

q
1 2

e�k�f,b

jEf,b j ,

Ef �k� �
p

�ef�k��2 1 �Df�k��2, and Eb
6�k� �

6
p

�eb�k��2 1 �Db�k��2 2 mb , where ef�k� and Df�k�
are the fermion dispersion and gap function, respectively,
eb�k� and Db�k� are the dispersions of the bosons, and
mb is the boson chemical potential.

Notice that besides a coherent part for the spectral func-
tions which resembles the form of the BCS spectral weight
(2), albeit scaled by a factor of x

2 , there is also an added
incoherent contribution to the hole part of the spectral
function (3).

To calculate the tunneling current we have used the fit
to ARPES measurements as dispersion for the fermions
(spinons) and a nearest neighbor tight binding dispersion

eb � 22tb�coskx 1 cosky�

for the bosonic degrees of freedom (holons) with tb the
hopping matrix element for the holons. It is important
that we match the fermionic band structure with the
ARPES measurements since the fermions have a bigger
band mass and hence determine the dispersion relation
seen in ARPES [6,8]. The electrons measured in those
experiments are thought of (within spin-charge separating
models) as bound states of the heavy spin degrees of
freedom and the light charge degrees of freedom. Since
we are interested in the low energy effective theory, the
details of the broad dispersion for the holons (charge
degrees of freedom) are not crucial and hence have been
3693
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chosen to be as simple as possible. Furthermore, to arrive at Eq. (3) we assumed boson condensation of the holons.
With the above expressions for the spectral functions in the sample, we can calculate the tunneling current us-

ing Eq. (1) as

jT jV.0 � 4epG2N�EF�
X

k,E�k�#V

x
2

u2
f �k�

jT jV,0 � 24epG2N�EF�
X

k,E�k�#jV j

x
2

y2
f�k� 1

1
2N

2X
k,q

�ub�q 2 k�uf�q� 1 yb�q 2 k�yf�q��2

1
1

2N

1X
k,q

�ub�q 2 k�yf�q� 2 yb�q 2 k�uf �q��2,

(4)
where
P6

k,q �
P

k,q�Q�Ef�q� 1 Eb
6�q 2 k�� 2

Q�Ef�q� 1 Eb
6�q 2 k� 2 jV j��.

When comparing the two dI
dV curves in Figs. 1 and 2,

one can see how the lowest energy physics is virtually
identical. However, on energy scales bigger than 4D0 a
marked asymmetry in the background of the SU(2) model
dI
dV shows up with an increase in the hole tunneling spectral
weight.

The inset of Fig. 2 depicts the incoherent contribution to
the hole tunneling spectrum separately (scaling the height
of Fig. 1 by x

2 and adding the incoherent hole contribution
results in Fig. 2). The increase in the hole tunneling spec-
tral weight arises due to the fact that removing an electron
from the sample requires the recombination of the spin and
charge degrees of freedom into a single entity. This yields
a mixing in of the higher energy holon dispersion whose
detailed form is not known within the effective low energy
theory.

Another feature so far not discussed is the scaling with
the hole doping of the conductance peak corresponding to
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FIG. 1. The two peaks symmetrically located in height and
energy with respect to zero bias are the usual peaks arising from
the gap structure in the superconducting density of states. The
two outer peaks are the remnants of the van Hove singularity.
The wiggles in the background are due to the discreteness of k
space when performing numerical calculation. The discreteness
becomes amplified by the derivative taken in obtaining dI

dV
from

the tunneling current (3). The resolution in voltage is 3 meV.
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electrons tunneling into the sample. By comparing Eqs. (3)
and (4) we see that, within the SU(2) model, the peak
height scales linearly with x, whereas there is no depen-
dence of the peak height on doping within the d-wave ap-
proach. The doping dependence within SU(2) arises from
the reduction of the overlap of the electron in the tip with
the quasiparticle (as a bound state of holons and spinons)
in the sample which, crudely speaking, means that an elec-
tron can only enter the sample on empty sites and then
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FIG. 2. Here we have set t
f
1 �2tb � 1�2. Df � D

f
0 �coskx 2

cosky� and Db � D
b
0 �coskx 2 cosky� with D

f
0 �D

b
0 � 1�2,

where t
f
1 � 2297.6 meV from the ARPES fit and D

f
0 �

22 meV. Notice that the above ratios correspond to J�t � 1�2
within the t-J model. The solid curve is our slave-boson
result. The wiggles in the background are more pronounced
here, as compared with Fig. 1, due to smaller resolution in k
space in calculating the convolution integrals (4). Here the
resolution in V is 5 meV. The dots are the experimental result
from Ref. [2]. The inset shows the incoherent part of the hole
tunneling spectral weight. Notice that the exact shape of this
curve should not be taken too literally; see discussion on boson
band structure in the main text.
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“decay” into its constituent parts. The only doping depen-
dence within the d-wave approach arises due to the chemi-
cal potential which dictates the separation of the double
peak structure but not its height. The linear scaling with x
within the SU(2) slave-boson mean-field theory discussed
here should be taken more as a qualitative than exact quan-
titative prediction, since it is a mean-field result. Recent
photoemission experiments [9] by Ding et al. observed a
linear x dependence of the quasiparticle peak, which fits
the mean-field result of the SU(2) theory very well.

Thus, at the mean-field level we have found qualitatively
different behaviors with regards to the x dependence of the
hole tunneling background and the electron-tunneling peak
within d-wave BCS and the SU(2) slave-boson theory. It
is this difference in doping dependence, which should be
experimentally testable and hence yield a feature distin-
guishable between the two models.

Furthermore, notice that the DOS contains singularities
(for both BCS and the slave-boson model) at the electron-
tunneling peak. The curvature of the measured dI�dV
curve at these peaks should give us an upper bound on
the quasiparticle decay rate at the energy scale of the su-
perconducting gap. Based on new experimental data by
Pan et al. [2], the quasiparticle decay rate can be as small
as a few meV even for quasiparticles with energy as high
as 40 meV. This is very different from the normal state,
where the quasiparticle decay rate is of the same order of
magnitude as the quasiparticle energy. We would also like
to remark that, according to the photoemission and tunnel-
ing results for underdoped samples, the quasiparticle peak
(with a width of order T ) disappears completely above Tc

while the gap remains at �0, p�. Based on the slave-boson
theory, the sharp electron-tunneling peak arises due to the
condensation of the holons (whose weight is proportional
to x at T � 0). As T approaches Tc, the fraction of the
condensed holons vanishes. If we assume that the holons
are very incoherent above Tc, we can conclude that the
sharp electron-tunneling peak should disappear above Tc.
This picture from the slave-boson model is completely
consistent with the observed results from photoemission
experiments.

Another point to make here is about the van Hove sin-
gularity. Samples with small superconducting gaps �D �
25 meV� show a double peak structure in the tunneling
dI�dV curve, and the double peak structure crosses over
into a single peak for large superconducting gaps. At first
sight, one might guess that the double peak structure is
due to the van Hove singularity. However, after compar-
ing the experimental line shape with the theoretical line
shape, we conclude that the double peak cannot arise due
to the van Hove singularity. This is because the experi-
mental peaks at higher bias are quite symmetric, while the
peaks from the van Hove singularity are very asymmetric
(the peak at the hole side is much stronger than the peak
on the electron side). Based on the dispersion obtained
from the fitting of the ARPES measurements, the van Hove
singularity should show up even for samples with larger
gaps �D � 50 meV�. However, experimentally, one fails
to see the van Hove singularity even when the gap is as
small as 20 meV [2]. This seems to suggest that quasipar-
ticles have a very short lifetime (spin-charge separation)
above the superconducting gap, and hence the van Hove
singularity cannot be observed. This leaves us with the
question of where the double peak feature comes from if
there are no well-defined quasiparticles above the super-
conducting gap. We hope that the double peak structure
may give us some hints on how coherent quasiparticles
emerge in the superconducting state from the incoherent
normal state.

Finally, we would like to point out that the results of this
paper are obtained from a mean-field calculation within
the slave-boson theory. One naturally questions the relia-
bility of the mean-field result and how much of our result
remains valid after the gauge and other fluctuations are
included. One of our main results is the explanation of
the asymmetric tunneling background. It can be traced
back to the strong on-site repulsion. It is much easier to
remove an electron than to add an electron and create a
doubly occupied site. We believe this result is robust and
will survive the fluctuations around the mean-field state.
The second main result is that the weight of the coherent
quasiparticle tunneling peak is proportional to the doping
x. After including the fluctuations, we believe that the
weight of the coherent peak should have a similar doping
dependence. This is because the coherent peak comes from
the quasiparticle which is a bound state of a spinon and
a holon. However, the detailed dependence may be of a
more general form x11a (i.e., the fluctuations may correct
the exponent) [10].
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