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We show that the structure of a substrate pattern drastically influences the nature of surface freezing.
By using phenomenological theory and computer simulations of a hard sphere fluid next to a substrate
formed by a periodic array of fixed spheres, we find that a pattern which is commensurate with the bulk
crystal induces complete surface freezing through a cascade of layering transitions. A rhombic pattern,
on the other hand, either generates a crystalline sheet which is unstable as a bulk phase or prohibits

surface freezing completely.

PACS numbers: 68.35.Rh, 64.70.Dv, 82.70.Dd

While bulk phase transitions are by now well under-
stood, the presence of a surface induces a much richer sce-
nario of interfacial phase transitions such as wetting [1,2]
or surface reconstruction [3] which is interesting from a
fundamental point of view and important for many tech-
nical applications. Surface freezing is a peculiar type of
wetting transition, where a liquid surface builds up spon-
taneously several crystalline layers at temperatures well
above bulk freezing. Unlike spherical particles, chain
molecules such as alkanes [4] and alcohols [5] may form
a crystalline sheet on top of their free liquid-vapor in-
terface. The corresponding molecular understanding has
greatly advanced via both phenomenological theories [6]
and computer simulations [7].

In contrast to a free surface, spherical particles may
exhibit surface freezing near a patterned substrate. In
fact, well-characterized substrates with periodic nanosized
chemical and topographic structures can now be prepared
using such techniques as lithographic procedures. Used as
a template, a patterned substrate can profoundly influence
the nature of wetting transitions, as recently demonstrated
for chemically heterogeneous surfaces [8,9].

In this Letter we investigate how surface freezing is in-
fluenced and controlled by an underlying topographically
patterned substrate. We focus on a fluid of spherical par-
ticles modeled as hard spheres in the neighborhood of a
substrate composed of fixed hard spheres forming a peri-
odic two-dimensional array. There are two main reasons
for our approach. First, the model is kept simple since
the thermodynamics and phase diagram of the bulk hard
sphere system depend only on the volume fraction 7. The
bulk hard sphere systems exhibit a freezing transition with
volume fractions 1y = 0.494 and 7, = 0.545 of the co-
existing fluid and solid [10]. Understanding the molecular
principles of surface freezing is thus possible within this
“minimal” framework. Second, our model is actually ap-
plicable for index-matched sterically stabilized colloidal
suspensions on periodic patterned substrates which can be
prepared by “gluing” colloidal spheres onto a periodic pat-
tern [11]. Such colloidal model systems bear the further
advantage that real-space experiments can be performed, as
the relevant length scale is shifted from the microscopic to
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the mesoscopic regime. Nevertheless our model may also
serve as a simple microscopic description of molecular sys-
tems such as liquid metals on crystalline surfaces. Conse-
quently, all of our predictions can, in principle, be verified
in real-space experiments of colloidal suspensions [11] or
by scattering techniques probing the inhomogeneous mi-
croscopic structure of liquid metals near crystalline sub-
strates [12].

As a result, we show that a pattern which is commensu-
rate with the bulk crystal induces complete surface freez-
ing with an onset far away from bulk coexistence. This
proceeds via a cascade of subsequent layering transitions
as the bulk freezing transition is approached. On the other
hand, a surface pattern which is distorted from the com-
patible one leads either to incomplete surface freezing or
completely prevents surface freezing. For small distortions
there is incomplete wetting by crystalline layers which are
unstable as a bulk phase. These layers directly inherit their
structure from the underlying pattern. However, above a
critical distortion surface freezing does not occur anymore.

Our results are based on computer simulations and phe-
nomenological theory. Monte Carlo simulations were per-
formed for N hard spheres with diameter ¢ at temperature
T in a rectangular box of size V = L,L,L_ with periodic
boundary conditions in x and y directions and two pat-
terned walls at distance L, confining the system perpen-
dicular to the z direction. Both constant volume (NVT)
and constant wall-pressure (NPT) ensembles were used
and it was carefully checked that the simulation results
were ensemble independent. Finite size effects were sys-
tematically studied by varying the box lengths and areas
from L L, = 160? to L,L, = 2710? and L, = 400 to
L, = 1000, corresponding to particle numbers between
N = 640 and N = 10400. The substrate pattern con-
sists of hard spheres with the same diameter o as the
mobile ones. These spheres were fixed in a plane on a
two-dimensional lattice which was compatible with the
lateral periodicity of the simulation box. Both a trian-
gular pattern, resulting from a (111) surface of the face-
centered-cubic (fcc) bulk crystal coexisting with the fluid,
and a distorted rhombic pattern were used (see Fig. 1).
In the triangular case, the lattice constant aa is 1.10750
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FIG. 1. Geometry of the triangular and rhombic substrate pat-
tern. The rhombic pattern results from the triangular one by
distorting the lattice, as indicated by the arrows, such that the
area A, of the unit cell remains constant. For the triangular pat-
tern the three types A, B, and C of honeycomb cells defining
the stacking order parameter are also shown.

with a height i of the equilateral triangle of v/3an /2.
The rhombic pattern has a lattice constant a smaller than
ap but a larger height k, such that the area A, = ah of
the elementary cell remains unchanged (see Fig. 1). We
characterize the rhombic distortion via the lateral strain
e =+J[(a — apn)/ap? + [(h — ha)/haT>. Obviously,
€ vanishes for a triangular pattern, but for a pattern not
compatible with the bulk solid we have € > 0. Since all
interactions are of excluded-volume type, the thermal en-
ergy kpT scales out and the system is completely described
by the reduced bulk pressure P* = Po>/kgT and the
lateral strain e.

During our simulations we monitored a suitable order
parameter V,,, which probes the ideality of stacking in the
nth layer and is sensitive to layerwise surface freezing.
In what follows, we explain its definition for a triangular
pattern, the generalization to a rhombic pattern being
straightforward.  The position of the minima in the
laterally integrated density profile was used to define
the spacing of the nth layers in the z direction. We
then probed the stacking properties in the nth layer by
projecting the particle positions onto the surface. Figure 1
depicts the honeycomblike cells A, B, and C which
correspond to the three stacking possibilities that the
projection can fall into. Hence one obtains the averaged
probabilities { p;(f‘), psz), pflc)} for a particle in the nth
layer to be projected into a honeycomb of type A, B, or
C. The stacking order parameter W, is now defined as
the difference between the two largest numbers of the set

;({4), p,gB), p,(f)}. For a fluid near a nonstructured wall,
all stacking probabilities are equal, hence W, vanishes.
For the first l(igler of(a structured wall, an inhomogeneous

liquid has p < p\® ) as it is unlikely for a particle to
sit on top of the fixed wall sphere. Furthermore, due to
symmetry, pr) = pgc); therefore, W, vanishes again.
A freezing transition in the nth layer is indicated when
V¥, > 0, corresponding to a broken discrete symmetry
between the two stacking possibilities. Finally, in a perfect

(fce) solid, ¥, = 1 [13].

The order parameter ¥, is shown versus the reduced
bulk pressure in Fig. 2 for a triangular pattern. Bulk freez-
ing occurs for P = 11.64, as indicated by the dashed line.
As P} is approached from below, there is already a sud-
den jump in ¥, at P* = 8.2, signaling surface freezing in
the first layer. Then there is an infinite cascade of subse-
quent surface freezing transitions in the following layers
as the bulk pressure is further increased. We show the first
four transitions in Fig. 2. This leads to complete wetting
of the substrate by the crystal and is in striking contrast
to the continuous growth of sedimentation profiles in hard
sphere systems [14]. We have systematically studied these
transitions as a function of system size. If the reduced
surface area A* = L,L,/a? of the simulation box is en-
hanced, the reduced transition pressures P saturate as de-
picted in the inset of Fig. 2, proving that our results are
beyond finite size corrections. Furthermore, the sharpness
of the jumps in W, versus P* as indicated by the symbol
size in the inset of Fig. 2 scale roughly with 1/+/A*. This
leads to the conclusion that the surface freezing transition
is first order. Comparing our data to that of a nonstructured
wall [15], there are both qualitative and quantitative differ-
ences. First, the nature of the surface freezing transition
is different. In our case the lateral translational symme-
try is already broken so that first order phase transitions
are less obvious. However, the broken discrete stacking
symmetry is the key quantity characterizing the transition.
Second, the actual numbers for the onset of surface freez-
ing are quite different. While it occurs at a pressure of 3%
below Pf for a nonstructured wall, it already starts 1 order
of magnitude earlier, that is, at 29% below ij 1n our case.
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FIG. 2. Order parameter ¥, (n = 1,2,3,4) versus reduced
pressure P* for a triangular wall pattern with P indicating the
coexistence pressure of the bulk system. The system size is
L,/o = 45 and A" = 106. The inset shows the transition pres-
sures P;, forn = 1,2,3,4 from bottom to top versus the reduced
area A”.
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This strikingly demonstrates the decisive role of the sub-
strate pattern which favors the solid phase. For a rhombic
pattern we find incomplete wetting by rhombic crystalline
sheets proceeding via a finite number of layering transi-
tions. Explicit results are discussed later.

Let us now describe a phenomenological theory for
wetting by a crystalline layer. We start from the excess
grand canonical free energy 3 per unit area with regard
to a nonwetting situation and discuss this quantity if a
crystalline sheet of thickness € is present, including con-
tributions from thermodynamics and elasticity theory. The
thermodynamical contribution for a wetting layer of thick-
ness € near coexistence, i.e., if AP =P. — P >0 is
small, reads [1]

E0(6) = Yys T Ysf — Ywf + aAPC

+ yoexp(—€/€o) . (1
The important ingredients here are the three interfacial
free energies, extrapolated to coexistence, between the
patterned wall and the solid (), the patterned wall
and the fluid (y,), and the bulk solid and fluid (/).
a = (g, — my)/ms = 0.103 is the relative density jump
across bulk freezing. For large widths €, as we are dealing
with short-ranged interparticle interactions, the effective
repulsion between the wall-solid and solid-fluid interface
decays exponentially, involving a correlation length € in
the solid and an amplitude 7y, which in general will de-
pend on the wall pattern [1]. There is a further free energy
penalty 3 (€), if the crystalline sheet is distorted with re-
spect to the coexisting bulk crystal [16]. As motivated
by our simulations, the crystal is assumed to be distorted
only in lateral directions according to the surface pattern
but undistorted in the z direction. Linear elastic theory
applied to a wetting layer then yields 3(¢) = Be*{ for
small €, where 8 can be expressed in terms of the elas-
tic constants of the crystal. In the case of a rhombic
pattern, B = (Cy; — C12)/2 = 24.43kpT /o> for a hard
sphere crystal at coexistence [17]. We further assume that
vo and €, are not affected by the small distortion €. Mini-
mizing 2o + 3 with respect to € yields the realized width
as a function of AP and €. Note that the phenomenologi-
cal approach does not predict whether complete wetting
occurs as it does not fix the sign of yys + Y5 — Ywyr.
Also, since a coarse-grained description is used, there is
no discrimination between continuous growth and a cas-
cade of layering transitions. However, once the assump-
tions of complete wetting are satisfied, the theory predicts
quite general asymptotic relations which no longer depend
on the interfacial free energies vy, ¥sr, and y,¢: (i) For
vanishing e, the thickness ¢ diverges logarithmically with
AP, ¢ = —€yIn(€oaAP/yy). (ii) For € # 0, there is
always incomplete wetting, and the maximal thickness
which is achieved at AP = 0 varies logarithmically with
e, £ = —{oIn(BLoe?/yo).

In the insets of Fig. 3 we have tested these two relations
against our simulation data using log-linear plots. Good
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agreement is found for relation (i) as shown in inset 3(a).
By fitting a line to our data, we extract actual numbers for
the correlation length €y = 1.660 and the amplitude yy =
0.89kT /o?. By using these parameters, relation (ii) is
also confirmed [see inset 3(b)]. However, the uncertainty
of the data is large since the measured thickness of the
layer is necessarily a multiple of the layer spacing a, =
\/2/3ap in the z direction. Note that the solid line in inset
3(b) involves no fit parameters as these are fixed by the fit
of inset 3(a).
Furthermore, the layering transition of the nth layer can
be estimated by the theory to occur when
70 2
aAP = g—oexp(—naz/{fo) — Be”. 2)
In the plane spanned by AP and €2, the transition lines are
predicted to be linear. In fact, as shown in Fig. 3, most of
our computer simulation data for the layering transitions
fall upon straight lines. We emphasize that the slope does
not involve any fit parameter; therefore, quantitative agree-
ment between theory and simulation is obtained within the
error bars of the simulation data. However, there are de-
viations for large strains which we attribute to anharmonic
elasticity. In fact, when €2 — 0.021, the cost in free en-
ergy due to the lateral distortion diverges because then two
wall spheres touch. This is not accounted for in the theory.
A further notable fact drawn from Fig. 3 is that there
is no surface freezing at all if € exceeds a critical value

0.02

AP

FIG. 3. Location of the first four layering transitions in the
plane spanned by AP* and €2. The symbols represent simu-
lation data with their statistical error. The straight lines are
the theoretical predictions. The simulation result for €2 is indi-
cated by the dashed line. Inset (a) shows the thickness ¢ versus
—InAP*. The straight line here is the best linear fit. Inset (b)
shows the maximal thickness € versus —Ine?. The straight line
is the theoretical prediction. The symbols represent simulation
data with the size of the symbols marking the error.
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€.. The theory predicts €2 = 0.014 while the simulations
yield a smaller value, ef = 0.011 = 0.001, due to the an-
harmonic elastic free energy. For € > €. the large free
energy cost of elastic distortion prevents the system from
surface freezing. The actual situation is a strongly inhomo-
geneous fluid reflecting the surface pattern which remains
stable up to the bulk freezing point.

In conclusion, the structure of a substrate pattern
influences profoundly the scenario of surface freezing.
First, the onset of surface freezing can be significantly
shifted away from coexistence by using a pattern that
favors the crystal, as the triangular pattern in our study
shows. Second, new surface phases, which are unstable as
bulk phases, can be generated by a suitable pattern leading
to incomplete freezing at coexistence, as demonstrated for
the rthombic pattern in our study. Third, surface freezing
can be completely suppressed if the pattern is unfavorable
for any solid. The second and third effects were accounted
for in a simple phenomenological theory which involves
bulk and surface thermodynamics together with elasticity
theory of the solid. The corresponding scaling laws
were quantitatively confirmed by our simulation data.
Our simulation results may serve as benchmark data to
test the recently developed density functional theories of
hard sphere freezing [18] in inhomogeneous situations.
Furthermore, our approach can directly be applied to triple
point wetting and to chemically patterned wall structures.
As an outlook, we remark that the creation of unstable
phases by a surface pattern can be used to prepare “exotic”
structures such as quasicrystalline sheets on a suitably
patterned template. Future work should focus on the role
of crystal defects induced by substrate patterns, which
were neglected in our approach and on transitions from
commensurate to incommensurate in-plane lattices.
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