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The two-dimensional (2D) melting transition is analyzed on the basis of the long-time behavior of
a modified Lindemann parameter in 2D 7y, (¢) and the bond-angular correlation function gg¢(¢). Using
video microscopy complete positional data are obtained over five decades in time for an ensemble of
superparamagnetic colloidal particles confined to an air-water interface. We find that each of the three
phases (solid/hexatic/isotropic liquid) is uniquely characterized by the long-time behavior of 7y, (¢), g¢(),
and the non-Gaussian parameter of the relative neighbor-neighbor displacement.
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Ever since the work of Kosterlitz and Thouless [1]
and—inspired by the latter—of Halperin, Nelson, and
Young [2,3] the melting transition in two dimensions (2D)
has been a continuous matter of debate. Their theory,
referred to as KTHNY theory, suggests that a 2D crystal
melts via two continuous transitions to the isotropic liquid
with an intermediate hexatic phase. Both transitions are
mediated by the pairwise creation of topological defects.
First the disassociation of dislocations drives the system
to the hexatic phase while the creation of disclinations
induces a transition to the isotropic liquid. However,
KTHNY only predicts the temperatures where the system
becomes unstable to formation of the defects and does
not rule out the possibility of a first-order melting tran-
sition (without hexatic phase) preempting the KTHNY
scenario [4].

While experiments with electrons on helium [5] and
with colloidal particles in quasi-2D systems [6—9] were
in favor of the KTHNY theory, the situation is much more
controversial concerning computer simulations. Both for
hard sphere and Lennard-Jones systems the odds were for
a long time against KTHNY until recently very large sys-
tems were studied [10,11]. So far all simulations and ex-
periments focused on the static correlation functions of
the particle ensemble at melting. This may be due to
the fact that the mean square displacement (Au?(¢)) [with
Au(z) = u(¢) — u(0) [12]] is not an appropriate measure
to distinguish between the solid and the liquid phases in
2D, since it diverges at long times with increasing sys-
tem size [13]. In fact, an alternative is to replace (Au?(z))
by the relative neighbor-neighbor displacement [14] or the
displacement with respect to a local coordinate system de-
fined by different neighbor shells [15]. In addition there
are theoretical predictions for the bond-angular correlation
function in time g¢(t) = (exp[i66(¢)]), which suggest an
algebraic decay in the hexatic phase similar to spatial cor-
relations [16].

In the present Letter video microscopy is used to study
the dynamic properties of an ensemble of colloidal par-
ticles in a quasi-2D system over 5 decades in time. We
show that the 2D Lindemann criterion of melting [14,15]
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is applicable and that the behavior of ge(7) is in fact as
predicted in [16]. Finally the glide of free dislocations
leads to a dramatic increase of a non-Gaussian parameter
as the system enters the hexatic phase. To our knowledge
the present data represent the first results on the dynamic
behavior of a 2D solid at melting. The characterization
and preparation of the samples and the realization of the
experiments followed precisely the procedure described in
[9]. Therefore we only briefly summarize the essentials
here: Superparamagnetic spherical colloids [17] of diame-
ter d = 4.5 wm and mass density 1.7 kg/dm? are con-
fined by gravity to a water/air interface. The latter is
formed by a cylindrical drop suspended by surface tension
in a top-sealed ring. The flatness of the water-air interface
(@ = 8 mm) is controlled within =1 um [18]. For weak
magnetic fields B applied perpendicular to the interface the
induced magnetic moment M depends linearly on B, i.e.,
M = xB with an effective magnetic susceptibility y [18].
The repulsive magnetic dipole-dipole potential dominates
the interaction and is absolutely calibrated by the interac-
tion strength I' = (wo/47) (x B)2(7rn)*2/kT (n denotes
the 2D volume fraction of the particles).

The experiments were carried out as follows: At high
I', in the crystalline phase, the system was equilibrated
by application of small ac magnetic fields in the particle
plane. Next, the temperature 7 = 1/I" was increased by
steps, each increase followed by an equilibration time [9].
Coordinates of typically 10° particles (the entire sample
contains =~10° particles) were recorded using digital video
microscopy and evaluated on a PC later on. While the
data in Refs. [9,18] were rather limited in time we are now
able to track 2000 particles in time steps of Ar = 0.2 s
over arbitrary long times. This is possible by tracking
and labeling all particles using the minimum time step
At, but recording data and corresponding labels only on
a logarithmic time scale Af, = 2"At. The value of n is
increased by 1 after every 1000 data records. This reduces
the otherwise unmanageable large amount of data to be
stored. The labeling of particles in subsequent records
allows one to find the corresponding coordinates even if
At, becomes large.
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The dynamic behavior of the particle ensemble is ana-
lyzed in terms of the bond-order correlation function and
the above mentioned Lindemann melting criterion appli-
cable to 2D. In Fig. 1 (top) the Au(z) values of some
few hundred particles at a temperature of 1/T" = 0.0160
(about 4% below melting) are shown. Initial particle posi-
tions are indicated by a dot and the lines correspond to the
diffusion over a time of about 2000 s. Long wavelength
fluctuations involving hundreds of particles induce abso-
lute displacements of the order of the lattice constant. In
Fig. 1 (bottom) the relative motion of the colloids with re-
spect to their first neighbor shell is drawn [15]. Obviously
this quantity more appropriately describes the crystal-like
dynamics and is independent of the sample size. In a
forthcoming paper we will show that this “neighbor-shell”
approach is qualitatively identical to the use of the rela-
tive displacement of neighboring particles (indices j and
i+ 1D yu={a; — ujy1)?)/a?, the lattice constant be-
ing denoted by a [14]. For the following we will general-
ize 7y to a time correlation function as already introduced
in [9]:

yi(t) = ((Arwi (1)) /2a*
= ((Au;(t) — Auji1(1)?/24%, (1)

where we refer to Ar(¢) as the relative neighbor-neighbor
displacement. In the crystal vy, (¢) is bound at long times,
its limit value being equal to y,: This follows if Eq. (1)
is rewritten as

yi(t) = {{(u;(1) — ujs1(0))*) + ((u;(0) — uj+1(0))%
— 2{(u;(t) — uj41(1) (u;(0) — uj11(0)))}/2a>.
2

As the displacements of the particles are not correlated
over long times the last term in Eq. (2) vanishes as t — <.
On the other hand, in the liquid phase the displacements
Au(z) of particles j and j + 1 are uncorrelated at long
times and 7y (f) is therefore proportional to the mean
square displacement [19]. In Fig. 2 y.(#) is shown as a
function of time for various values of 1/I". The long time
behavior clearly distinguishes between the solid [y, (?)
finite] and the liquid [y, (#) — ] phases. In the inset the
data are drawn in linear scale to illustrate the difference in
the behavior of vy, () observed at melting. At times be-
low 0.2 s all the curves merge as the motion corresponds
to free diffusion [18]. In the liquid phase the diffusive
behavior—represented by a linear increase of vy (¢) with
t—1is recovered at long times.

We demonstrated in [9] that our crystalline system
melts into the hexatic phase, which is characterized by
a quasi-long-range orientational order [16]. Here we
analyze the bond-order correlation function in time,
i.e., go(t) = (exp[i66(r)]), where 6(r) denotes the angle
fluctuation of a fixed bond over time . In Fig. 3 ge(¢) is
drawn as a function of 1/T" in a log-log diagram. Three
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FIG. 1. (top) Part of the sample showing the absolute displace-
ment of some few hundred particles at a value of 1/T" = 0.0160,
which is about 4% below melting. The particles may undergo
excursions about their equilibrium positions of the order of the
lattice spacing. If the relative displacement with respect to the
first neighbor shell is plotted (bottom), the excursions are sig-
nificantly smaller.

different ¢ dependencies can be distinguished: In the
solid phase (1/I" = 0.0160) g¢(#) tends to a constant
close to 1 at long times, while it decays exponentially to
zero in the isotropic liquid 1/T° = 0.0183. In the hexatic
phase 1/T" = 0.0168/0.0176 the decay is algebraic with
an exponent compatible with the prediction [16], i.e.,
one-half of the value found for the spatial correlation
function g¢(r) usually denoted by 76(T’). This can be seen
for 1/T" = 0.0176 where the system is close to the transi-
tion to the isotropic liquid phase (7; = 1/T'; = 0.0179):
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FIG. 2. Dynamic Lindemann parameter as a function of the
temperature 1/T". In the crystalline phase the long-time limit of
v (1) is bounded while it diverges in the liquid phases (1/I" =
0.0168). The inset shows the data in a linear plot to illustrate
the change in the behavior of vy, (z).
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FIG. 3. The bond-order correlation function in time g¢(t) as a

function of 1/T". Clearly three long-time regimes of g¢(¢) can
be distinguished: In the solid ge¢(#) tends to a constant; in the
hexatic and the isotropic liquid, respectively, an algebraic and
an exponential decay is found.

We found 7n¢(7T;) = 1/4 [9] as compared to 2 X 0.11.
As stated above the functions yp(z) and ge(r) clearly
characterize the different phases of a 2D system. The use
of time correlation functions instead of spatial ones has
the advantage that due to the limited field of view the latter
cannot be obtained over a large dynamic range, while the
former can, in principle, over arbitrarily many decades.

Additional insight into the melting process is obtained
by the calculation of the non-Gaussian parameter of the
relative neighbor-neighbor displacement, defined as
ak (1) = (Art (1))/2(Ar2, (1)) — 1 in 2D. It is a mea-
sure of the deviation of a random variable from a pure
Gaussian behavior and large values are attributed to spa-
tial or dynamic heterogeneities, as, e.g., for supercooled
liquids close to the glass transition. It is convenient to ana-
lyze a% (1) together with the self-part of the corresponding
van Hove correlation function GL(r, ) defined as

N
Gf(}",t) = %<Z 5(1‘ - Arrel(lt))>» 3)
i=1
where N denotes the number of particles. The depen-
dence of a%(¢) upon 1/T is represented in Fig. 4 (note
the logarithmic scale of the y axis) and the van Hove func-
tions GE(r, ) are shown in Fig. 5. There open and filled
symbols correspond, respectively, to times ¢+ = 1000 s and
t = 6000 s (for 1/T" = 0.0160 the two curves coincide).
In the solid phase 1/T" < 0.0160 a5 () increases within
the first 300 seconds from O to a constant value =0.15,
i.e., the behavior is well described by a Gaussian. The in-
crease of a5(r) as 1/T approaches melting is mostly due
to the presence of pairs of bound dislocations which, as
shown in [9], are already present in the solid phase. These
lead to nonzero values of Gﬁ(r, t) for distances r of the or-
der of the lattice spacing a. For 1/T" = 0.0160, however,
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FIG. 4. The non-Gaussian parameter o (r) for the relative
neighbor-neighbor displacement as a function of 1/T". From
the solid to the hexatic phase the maximum of aQL (t) increases
by a factor of about 20. This behavior is further discussed in
Fig. 5.

these are too small to be resolved in Fig. 5. The situation
dramatically changes when the system enters the hexatic
phase. The maximum of ak () increases by more than an
order of magnitude which is caused by the appearance of a
peak in GE(r, ) at r = a. Apparently two species of col-
loids are present: particles diffusing around their equilib-
rium position (peak at » = 0.25a) and particles displaced
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FIG. 5. The self-part of the van Hove correlation function

GL(r,t), r being the relative neighbor-neighbor displacement.
The open and filled symbols correspond, respectively, to times
t =1000s and r = 6000 s. In the hexatic phase (1/I" =
0.0168/0.0176) two peaks can be distinguished correspond-
ing to particles moving around their equilibrium position
(rmax = 0.25a) and particles displaced with respect to each
other through the glide of dislocations (rmax = a) (as illustrated
in the inset).
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with respect to each other by the glide of free disloca-
tions (r = a). In the following we will call them, respec-
tively, slow and fast particles. In the inset the glide of a
dislocation through the system is represented in terms of
the relative neighbor-neighbor displacement of the par-
ticles [only the maximum of the six possible values of
Ar(#), corresponding to six different neighbors, for a
given particle is drawn] [20]. Obviously, at a given time the
system is spatially inhomogeneous. The glide of a disloca-
tion involves the collective motion of several colloids and
therefore the fast colloids will appear in clusters. However,
at long time we did not observe any inhomogeneity. Analy-
sis of the particles trajectories over long times (1 = 10* s)
reveals that basically all colloids took part in the glide of
a free dislocation during the time interval investigated.

In summary, the two-dimensional melting transition of
a quasi-2D ensemble of superparamagnetic colloidal par-
ticles is analyzed using the long-time behavior of dynamic
correlation functions. Real time video microscopy and
image processing on a PC enable one to record com-
plete positional data of 2000 particles over five decades in
time. The divergence of the long-time limit of a modified
Lindemann criterion in 2D, which analyzes the relative
neighbor-neighbor displacement Arg(z), determines the
melting point of the system. The bond-angular correlation
function in time g¢(z) is shown to decay algebraically in
the hexatic phase and exponentially in the isotropic liquid,
in agreement with theoretical predictions of the KTHNY
theory. In addition, the analysis of the van Hove function
GL(r, 1), which gives the probability that the relative dis-
placement Ar(?) is equal to the distance r at time ¢, and
the corresponding non-Gaussian parameter reveal that the
dynamics in the hexatic phase is governed by the glide of
free dislocations. Thus our measurements represent addi-
tional strong evidence for the occurrence of the KTHNY
melting scenario in 2D for 1/r3-type interaction potentials.

We acknowledge inspiring discussions with D. Nelson.
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