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We present a combined experimental and theoretical study of memory effects in vibration-induced
compaction of granular materials. In particular, the response of the system to an abrupt change in
shaking intensity is measured. At short times after the perturbation a granular analog of aging in glasses
is observed. Using a simple two-state model, we are able to explain this short-time response. We also
discuss the possibility for the system to obey an approximate pseudo-fluctuation-dissipation theorem
relationship and relate our work to earlier experimental and theoretical studies of the problem.

PACS numbers: 45.70.Mg, 61.43.Fs, 81.05.Rm
Granular materials comprise an important class of com-
plex systems whose simple fundamental mechanics gives
rise to rich macroscopic phenomenology [1]. Recent ex-
periments on granular compaction [2,3]suggest they are an
ideal system for studying jamming, a phenomenon lying
outside the domain of conventional statistical physics, yet
highly reminiscent of glassiness. These studies showed
that a loose packing of glass beads subjected to vertical
“tapping” slowly compacts, asymptoting to a higher steady
state packing fraction. This “equilibrium” packing fraction
is somewhat lower than the random close packing limit,
rrcp � 0.64, and is a decreasing function of the vibration
intensity, typically parametrized by G, the peak applied ac-
celeration normalized by gravity, g. The relaxation dynam-
ics are extremely slow, taking many thousands of taps for
the packing fraction, r, to approach its steady state value.
During this evolution, r increases logarithmically with
the number of taps, t, which is typical for self-inhibiting
processes [4]. The average time scale t of the relaxation
decreases with G, and in this sense the shaking intensity
plays, at least qualitatively, the role of temperature. For
small G, the relaxation rate becomes so slow that the sys-
tem cannot reach the steady state density within the experi-
mental time scale. It was also found that compaction can
be maximized through an annealing procedure. This pro-
cess involves a slow “cooling” of the system starting from
a high shaking intensity G. Another qualitative similarity
to glasses is observable in the density fluctuation spectrum
of the granular system near its steady-state density. The
spectrum was found to be strongly non-Lorentzian [3], re-
vealing the existence of multiple time scales in the system.
The shortest and the longest relaxation time scales differ by
as much as 3 orders of magnitude, and the behavior of the
spectrum for the intermediate frequencies is highly non-
trivial; in certain regimes it can be fitted with a power law.

These previous experimental observations are suggestive
of glassy behavior and this connection has been explored
in recent models of compaction using ideas from magnetic
systems [5]. However, a more direct test of the glassy
nature of granular compaction comes from measurements
of the response of the system to sudden perturbations of
the effective temperature, given by G. This idea originates
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from classical experiments for the study of aging in glasses
[6], and has recently been explored using computer simu-
lations [7]. In this Letter, we present direct experimental
observations of memory effects in a vibrated granular sys-
tem obtained by measuring the short-time response to an
instantaneous change in tapping acceleration G and pro-
pose a simple theoretical framework.

We used the experimental setup described in Refs. [2,3]:
1 mm-diameter glass beads were vertically shaken in a
tall, evacuated, 19 mm-diameter glass tube, and the pack-
ing density of the beads was measured using capacitors
mounted at four heights along the column.

The simplest form of this experiment consists of a single
instantaneous change of vibration intensity from G1 to G2
after t0 taps. For G2 , G1 (Fig. 1a) we found that on short
time scales the compaction rate increases. This is in sharp
contrast to what one may expect from the long-time behav-
ior found in previous experiments where the relaxation is
slower for smaller vibration accelerations. For G2 . G1
(Fig. 1b) we found that the system dilates immediately
following t0. These results, too, are opposite from the
long-time behavior seen in previous experiments where the
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FIG. 1. Evolution of the packing fraction, r, at four heights
in the column, as a function of tap number, t. Two different
single-switch experiments: (a) G was lowered from 5.6 to 1.8
at t0 � 25; and (b) G was increased from 3.5 to 6.3 at t0 � 30.
Curves are shifted vertically for clarity. Each curve is an average
over 4 runs, and the measurement uncertainty in r is 4 3 1024.
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compaction rate increased: not only does the compaction
rate decrease, but it also becomes negative (i.e., the sys-
tem dilates). Note that after several taps the “anomalous”
dilation ceases and there is a crossover to the “normal” be-
havior, with the relaxation rate becoming the same as in
constant-G mode.

These data constitute a short-term memory effect: the
future evolution of r after time t0 depends not only on
r�t0�, but also on information about the previous tapping
history, contained in other “hidden” variables. In order to
demonstrate this in a more explicit manner, we modified
the above experiment. In this second set of three experi-
ments the systems were driven to the same density r0 with
three different accelerations G0, G1, and G2. After r0 was
achieved at time t0, the system was tapped with the same
intensity G0 for all three experiments. As seen in Fig. 2,
the evolution for t . t0 strongly depends on the prehis-
tory. The need for extra state variables in the problem
is consistent with strongly non-Lorentzian behavior of the
fluctuation spectrum, observed in earlier experiments [3].

To give a theoretical interpretation of the above re-
sults, we view the problem as an evolution in the space of
discrete “microscopic” states corresponding to different re-
alizations of the packing topology (in addition to the topo-
logical changes, there are continuous deformations of the
network, which we assume to relax on the time scale of
a single tap [8]). For each tap there is a possibility for a
transition from one microscopic state to another. Since the
dynamics is dissipative and the system is under external
gravity, a transition to a denser configuration is typically
more probable than the reverse one. We now introduce the
concept of a baseline configuration (BC), which plays the
role of a local free energy minima for our nonthermal sys-
tem. Namely, a BC may be defined as a state where any
transition to a different configuration has a lower proba-
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FIG. 2. The time evolution of packing fraction r for a sys-
tem which was compacted to r0 � 0.613 at time t0 using three
different accelerations: G1 � 1.8 (circles), G0 � 4.2 (triangles),
and G2 � 6.3 (diamonds). After the density r0 was achieved,
the system was vibrated at acceleration G0. The evolution for
t . t0 depended strongly on the prehistory. Each curve is an
average over four experimental runs.
bility than the reverse one. Hence, there is a mesoscopic
time scale on which the system gets trapped in the vicinity
of a given BC, and its evolution is dominated by a number
of flip-flop modes, i.e., local “excitations” of the baseline
structure, any of which would normally relax back to the
same BC.

Neglecting the coupling between individual flip-flop
modes, we may replace the complicated configuration
space with a set of independent two-state systems,
each of which is characterized by two transition rates,
ke!g . kg!e. ke!g�kg!e gives the ratio of the equilib-
rium probabilities of populating each state: “ground” and
“excited” (with BC corresponding to all modes at their
ground state). As we have argued, the higher probability
ground state is typically the one with higher density, i.e.,
the volume change y between the ground and the excited
states is normally positive. Our no-coupling approxima-
tion is close in its spirit to a number of two-state models
recently proposed by several research groups [9].

Obviously, the experimentally observed density is dif-
ferent from that of the current BC, rb , due to a nonzero
fraction of excited modes:

r � rb�t�
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The summation here is performed over all the flip-flop
modes of a given BC, V is the total volume, and y�n� is
the volume difference between the excited and the ground
states of the nth mode. Assuming that the vibration in-
tensity G is a qualitative analog of temperature, we expect
the population of the excited states, P�G� � �1 1 k�n�

g!e�
k�n�

e!g�21, to grow with G, starting from zero at G � 0.
Hence, for a given rb , the total density r will be lower
at higher acceleration. This explains the observed anoma-
lous compaction following an abrupt change of G. After
a switch from G1 to G2 at time t0 � 0, the flip-flop mode
contribution to the total density, GG1,G2�t�, would relax to
its new equilibrium value in the following way:

GG1,G2�t� � rb

Z kmax

0
FG1,G2 �y, k�

3 �1 2 exp�2kt�� dy dk . (2)

Here k is the relaxation rate of an individual mode, and the
distribution function FG1,G2 �y, k� is introduced as follows:

FG1,G2 �y, k� �
1
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The distribution function is normalized so thatR
FG1,G2 �y, k� dydk � r��G2� 2 r��G1�, where r��G� is

the equilibrium number density of the excited modes at
given G. One can see from Eq. (1) that r � rb�1 2

�y	r��, i.e., since �y	 is expected to be of the order of a
single particle volume, r� is of the order of the flip-flop
correction to the total density. The observed amplitude of
the density changes in our experiments imply that r� is
3633
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normally less than 1% of the particle density, and thus one
can estimate the typical separation between neighboring
flip-flop systems as �r�r��1�3 
 5 particle sizes, which
is a good justification for our no-coupling approximation.
According to Eq. (2), if FG1,G2 does not vanish in the limit
k ! 0, the late stage of the relaxation of GG1,G2�t� is given
by the power law

GG1,G2 �t� � GG1,G2�`� 2
const

t
. (4)

Note that rb is also dependent on time: although this
cannot be described within our two-state approximation,
the collection of elementary modes slowly evolves. Thus,
one can observe two different processes: on short (in
fact, mesoscopic) time scales, a fast relaxation due to the
flip-flop modes is dominant, while over the long times, the
dynamics are determined by the logarithmically slow evo-
lution of the baseline density rb�t�. The crossover between
the two regimes is particularly obvious in Fig. 1b, where
it results in a nonmonotonic evolution. Such dynamics is
unusual in spin glasses, but has been observed for conven-
tional glasses [10]. For experiments performed at suffi-
ciently late stages of the density relaxation, the dynamics
of the baseline density could be neglected compared to the
contribution of the flip-flop modes (note that what we call
a late-stage relaxation corresponds in fact to mesoscopic
time scales which are always shorter than the relaxation
time for rb). It has to be emphasized that the described
experiments provide us with a tool for study of the re-
sponse of the system, which is not limited to the nearly
equilibrium regime.

One can use our simple model to predict the response
of the system to a more complicated pattern of changes of
G. First, we reach, using annealing dynamics, a “quasi-
steady” state at amplitude G0, so that one can consider rb

constant later on. Let us switch the shaking acceleration
from G0 to G1 for a finite number of taps dt, and then
switch it back to G0. During the intermediate G1 stage,
the system does not have enough time to completely relax
to its new equilibrium. In our two-state model, the modes
whose relaxation rate (at G1) is below dt21 remain unre-
laxed. Assuming that the slow modes at G1 are mostly
the same as at G0, we can calculate the backward density
relaxation similarly to Eq. (4), with F�y, k� effectively de-
pleted below a minimal rate, k0. This cutoff frequency, k0,
is expected to decrease monotonically with increasing per-
turbation duration dt. In the spirit of spin glass theories,
we can characterize the density relaxation after returning
to G0 by the “aging” response function which now depends
both on t and waiting time dt. Equation (2) gives the fol-
lowing form for its late-stage behavior:

GG1,G0�t, dt� � GG1,G0 �`� 2 const

∑
k0 1

exp�2k0t�
t

∏
.

(5)

We tested the above predictions by performing this three
stage experiment, varying the duration, dt, of the perturba-
3634
tion (G1) stage (Fig. 3). As predicted, the time needed to
recover the steady-state density increases with the number
of taps dt spent in the “hot” regime G1 . G0. In the
coordinates chosen, the relaxation curves should follow the
dt � ` dynamics until the saturation at the cutoff time,
k

21
0 �dt�. We approximate the distribution function F by

a constant above this low frequency cutoff at k
21
0 �dt�, up

to a high-frequency cutoff, kmax � 1. This eliminates the
unphysical low-t divergence in Eq. (5). Figure 3 shows fits
of the data to Eq. (2), where k0�dt� is determined from the
fit. The best fit is achieved at kmax � 0.4, and the variation
of this parameter would result in a simple rescaling of the
time axis.

Figure 3 demonstrates good agreement between model
and experiment, with some systematic error at the earliest
relaxation stage (which is an expected result of our over-
simplified description of the short time dynamics). For the
late stage relaxation, we conclude that (i) within our ex-
perimental precision, the dt � ` relaxation is consistent
with the predicted 1�t law; (ii) finite-dt relaxation curves
can be parametrized by a low frequency cutoff, k0; and
(iii) k0 is a decreasing function of the waiting time dt,
shown in the inset of Fig. 3. As discussed earlier, the wide
range of relaxation times reveals itself both in our response
measurements and in the fluctuation spectra of the density.
It is tempting to relate these two kinds of data through
an analog of a fluctuation-dissipation theorem (FDT). Of
course, there is no fundamental reason for FDT to be appli-
cable to the granular system [11]. Even though the above
two-state model could be mapped onto a thermal system (in
which FDT is expected to work), the thermodynamic vari-
able conjugate to density in the context of such a mapping
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FIG. 3. History-dependent density relaxation [GG1,G0 �t, dt�] of
the system, prepared by tapping for a long time at G0 � 1.8
and then tapping for a variable number, dt, of taps at a “hotter”
intensity G1 � 4.2 before being returned to G0 at time t1. The
solid lines represent the theoretical curves, with appropriate val-
ues of the parameter k0. The dependence of the cutoff rate k0
on the waiting time dt is shown in the inset for dt # 4 taps.
We do not show the value for dt � 8 since we found it null
within the error bar, as for dt � 4. Each experimental graph is
an average of 12 runs.
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has no clear physical meaning. Nevertheless, we can ob-
tain a pseudo-FDT relationship for the granular system if
we neglect the correlation between the volume change y

and the lifetime k21 of an individual mode, i.e., assume
F0,G�y, k� � f�k�g�y�. Then the density autocorrelation
function can be written as follows:

�dr�0�dr�t�	G �
r2

2V

Z
�y2	 exp�2kt�f�k� dk

�
r�y2	
2V �y	

�G0,G�t� 2 G0,G�`�� . (6)

Thus, the density correlator is simply proportional to
the response function corresponding to the switch between
a very low acceleration (at which virtually all the modes
are in their ground states) and the given one, G. An ex-
perimental check of this relationship requires further high-
precision studies of both the relaxation dynamics and the
fluctuation spectrum.

Our model also gives a simple interpretation to the de-
creasing dependence of the steady-state density on G: it
can be attributed to the growth of the population of the
excited states, P�G�. Indeed, the corresponding correction
to the total density is about 1%, i.e., of the same order
as the variation of the equilibrium packing fraction with
G [3]. The slow dynamics associated with the evolution
of the baseline density can also be addressed within our
approach. To do so we need to consider the excitation-
assisted transitions between different BC (which in turn re-
sults in the change of the set of available flip-flop modes).
In introducing the coupling between individual modes, it
is a reasonable assumption that the relaxation of one mode
to its ground state may frustrate such a transition for some
of its neighbors (e.g., in 3D the most compact local cluster
can be created only at the expense of less dense neighbor-
ing regions). Thus, we arrive at an effective antiferromag-
netic (AF) coupling (of an infinite strength) between the
flip-flop modes.

This extension of our model makes it remarkably simi-
lar to the so-called reversible Parking Lot Model (PLM)
[12], which has been successful in describing many aspects
of granular compaction experiments [2,3]. A mutual frus-
tration of individual modes is also a key ingredient of the
“tetris model” (TM), another fruitful approach for model-
ing the dynamics of the system [5–7]. PLM, TM, and our
flip-flop model with AF coupling all appear to belong to
the same generic class of frustrated spin systems. Indeed,
numerical simulations we performed on the PLM display
the same memory effects discussed above, and similar be-
havior is also observed in the TM [13].
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