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Strain versus Stress in a Model Granular Material: A Devil’s Staircase
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The series of equilibrium states reached by disordered packings of rigid, frictionless disks in two
dimensions, under gradually varying stress, are studied by numerical simulations. Statistical properties
of trajectories in configuration space are found to be independent of specific assumptions ruling granu-
lar dynamics, and determined by geometry only. A monotonic increase in some macroscopic loading
parameter causes a discrete sequence of rearrangements. For a biaxial compression, we show that, due
to the statistical importance of such events of large magnitude, the dependence of the resulting strain on
stress direction is a Lévy flight in the thermodynamic limit.

PACS numbers: 45.70.–n, 05.40.Fb, 83.70.Fn
The mechanical properties of granular media are cur-
rently an active field of research, both in the condensed
matter physics and in the mechanics and engineering com-
munities [1–3].

Granular packings close to mechanical equilibrium are
traditionally modeled, in the framework of continuum
mechanics, with elastoplastic constitutive laws [3,4], i.e.,
incremental stress-strain relations. Such laws, despite
their practical success, were never clearly related to grain-
level mechanics. Moreover, cohesionless granular systems
seem to be quite different from ordinary solids. Many
experimental, theoretical, and numerical studies [2,5–8]
have recently been devoted to the peculiar features of stress
transmission in granular systems at equilibrium, with
correlations over length scales significantly larger than
the grain size.

Observations of displacement fields and strains, as the
system moves from one equilibrium to another, are scarcer.
Systems of rigid grains are expected to deform because of
rearrangements of the packing, rather than contact elastic-
ity. How such rearrangements average to produce a macro-
scopic strain, related to stress variations, remains rather
mysterious. The rather singular, unilateral form of the lo-
cal interaction in such systems led some authors [9] to ex-
pect quite unusual macroscopic properties, for which the
very concept of strain, so familiar in mechanics of solids,
would be irrelevant.

Direct grain-level approaches are, in principle, possible
by numerical simulations. However, one has then to define
a complete mechanical model to enable a calculation of
particle trajectories. In practice, dynamical parameters
ruling energy dissipation are often chosen according to
computational convenience as much as physical accuracy.
It would be desirable to assess the influence of such choices
on the results.

The present numerical study addresses those problems,
as follows.

Disordered, dense assemblies of rigid, circular, friction-
less disks are prepared by isotropic compaction. The force
law reduces to the condition that contacts transmit repul-
sive normal forces of unknown magnitude. Then, the di-
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rection of the load is gradually altered, thus simulating the
biaxial test of Fig. 1. Exploiting the isostaticity property
[10–12] of such systems, which is exactly satisfied pro-
vided impenetrability is enforced accurately enough, we
designed a prescription [12] for the computation of se-
quences of equilibrium states that we call the geometric
quasistatic method (GQSM), in which the only inputs are
the geometric data. The strain versus stress evolution in bi-
axial compression tests is recorded, and a statistical analy-
sis of fluctuations and system size dependence is carried
out. Then the GQSM predictions are compared with those
of a standard molecular dynamics (MD) method.

First, samples of different sizes are generated (51
samples of N � 1024 disks, 23 with N � 1936, 10 with
N � 3025, and 15 with N � 4900). Disk diameters are
uniformly distributed between 0.5 and 1 (the largest diame-
ter is chosen as unit length), and packed in a loose state
within a rigid, square box. After some amount of random
mixing (using some dynamical method with energy
conservation), we proceed to the isotropic compaction:
two of the walls, 1 and 2 in Fig. 1, are now mobile, and
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FIG. 1. Sketch of a biaxial compression test.
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submitted to compressive external forces F1 (along the x
axis on the figure) and F2 � F1 (along the y axis). Stress
components s11 � F1�L2 and s22 � F2�L1 are kept
constant, equal to p, while the system lengths along direc-
tions 1 and 2 (L1 and L2) decrease. To produce a dense,
isostatic equilibrium state, we use the “lubricated granular
dynamics” method of Refs. [7,13]. Then, the initial,
reference configuration of the biaxial experiment is ready:
F2 � �p 1 q�L0

1 is gradually increased while F1 � pL0
2

stays constant; strain components are defined as the
relative decrease of lengths �Li�1#i#2, with reference to
their initial values �L0

i �1#i#2 as eii � 2DLi�L0
i . One also

defines the volumetric [14] strain as ey � 2e11 2 e22.
We use units such that p � 1.

As our main result here, we obtained the e�q� curves in
the thermodynamic limit, as loading parameter q increases
monotonically, at constant p. Let us first describe the
GQSM procedure. One starts from an equilibrium state
in which the force-carrying structure is isostatic. This
means that the equilibrium conditions are sufficient to
compute all contact force values, on the one hand (the
structure is devoid of hyperstaticity, it is not “over-
braced” or “overconstrained” [10]), and that the force-
carrying structure is rigid (devoid of mechanisms or
“floppy modes” [12]), on the other hand. The first of these
two properties stems from the condition that two grains
need to be exactly in contact to transmit a force to one
another [11,12], and cannot interpenetrate. It entails that
force values, once equilibrium positions are known, are
geometrically determined, all material properties being
irrelevant in the limit of rigid grains. The second property
is satisfied, for stability reasons, because the grains are cir-
cular and contacts do not withstand tension [12]. It entails
that an assembly of rigid disks will not deform at all until
some initially active contact opens. This cannot occur as
long as contact forces are compressive, since this would
require the potential energy to increase from equilibrium.
As soon as one contact force vanishes, this contact will
open [12], because the resulting motion corresponds to an
instability. Hence, the following algorithm.

(i) At equilibrium, as q increases from its initial value
q0, the contact forces depend linearly on q (equilibrium
equations are linear). When q reaches some value q0 1

dq, the force vanishes in one contact, say l0.
(ii) Open l0, all other contacts being maintained. Be-

cause of isostaticity, this entirely determines the initial di-
rection of motion for the whole structure. Keep moving
the grains with the same prescription.

(iii) When another contact, say l1, closes, the new con-
tact structure (the old one, minus l0, plus l1) is isostatic and
may carry the load with geometrically determined contact
forces. If there is no traction, a new equilibrium state has
been found: go back to step (i). Otherwise, pick up the
largest traction, call the corresponding contact l0, and go
back to step (ii).

This procedure determines a series of equilibrium con-
figurations that are separated by rearrangements occurring
for discrete values of q. The strain versus stress curve is a
staircase (see Fig. 2). As long as the same contacts carry
the load, the system does not deform; as soon as a rearrang-
ing event occurs, strain variables jump to the values cor-
responding to the next equilibrium configuration. This
algorithm clearly involves, in steps (ii) and (iii), an ar-
bitrary ingredient: the prescription that contacts open one
by one. The main merit of GQSM, however, is that it does
not introduce parameters other than geometric ones.

We now focus on the rise of e22 with q, close to the
origin, and ask whether the staircase approaches a smooth
curve in the thermodynamic limit. (Its initial slope, if
finite, would be the effective compliance of the material.)
To do so, one studies the statistics of stress (dq) and strain
(de22, de11) steps.

Successive dq and de values are found to be inde-
pendent, and the width dq of a stability interval is not
correlated to the following strain steps. Throughout the
investigated q interval, the probability distributions of in-
crements dq, de22, and dW � pdey 2 qde22, which is
the variation in potential energy corresponding to the cur-
rent load, do not appreciably change [15]. No significant
difference between samples is observed either.

Both q and e22 values reached at a given stage can thus
be regarded as sums of equidistributed independent ran-
dom increments. The distribution of stress increments dq
is displayed in Fig. 3. It decays exponentially for large
dq, and is shifted to smaller and smaller values as N in-
creases, so that the probability distribution of the rescaled
increment dqNa is size independent. We denote as dq0 its
average. The exponent can be estimated as a � 1.16 6

0.04. Stability intervals shrink to zero as N increases: in
the thermodynamic limit, any macroscopic load variation
entails some motion of the grains. This property of pack-
ings of frictionless rigid grains, known as fragility [9,12],
is unambiguously established by our simulations. The
value of a should be related to the shape of the force
distribution for small values, and to the varying sensitivity

FIG. 2. “Axial” strain e22 versus deviator q in one sample with
N � 4900.
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FIG. 3. Probability distribution function for rescaled stress in-
crements dq�N�1024�1.16 for the four values of system size N .

of the contact forces to macroscopic load increments. The
classical central-limit theorem, applied to q increments,
will relate for large systems the number of steps M from
the beginning of the biaxial compression to the current
value of q, as

M �
q

dq0
Na . (1)

The distribution of strain increments de22 is shown in
Fig. 4. A reduced variable Nbde22�de0 can also be de-
fined, with an N-independent probability distribution. Re-
markably, the (power-law distributed) number c of contact
losses (or gains) in one strain step, which tends to grow
with de22, does not show any significant size dependence,
and contacts that simultaneously open or close are homo-
geneously scattered throughout the sample, whatever N .
We estimated b as b � 2.18 6 0.12. Unlike for stress
increments, the distribution now decays as a power law:

p�de22� � �de22�2�11m�,

FIG. 4. Probability distribution function for rescaled strain in-
crements de22�N�1024�2.18 for the four values of N . The inset
displays the probability distribution function of the number c of
lost contacts in one strain step for each system size.
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with m � 0.46 6 0.03. As m , 1, it should be remarked
that, although the typical strain increment decreases as
N2b in the limit of large samples, the average strain in-
crement does not exist. The standard central limit theorem
does not apply, but, due to the power-law decay of the dis-
tribution function, one may resort to a generalized central
limit theorem [16]. In our case, for a large number M of
increments, the asymptotic form of their sum e22 is

e22 � de0N2bM1�mj , (2)

with an M-independent random variable j abiding by an
asymmetric Lévy distribution of index m.

The stress-strain relationship is obtained on combining
Eqs. (1) and (2):

e22 �
de0

�dq0�1�m
q1�mN2b1a�mj . (3)

The presence of j in Eq. (3) implies that the strain versus
stress curve will never express a deterministic dependence.
Some size effect—a dependence on N —remains in the
thermodynamic limit, unless one has

a � bm . (4)

Our estimates of a, b, and m are compatible with this
relation. If it is satisfied, then the distribution of axial
strain increments De22 corresponding to a given, fixed, q
increment, Dq, should no longer depend on the system size
as soon as N is large enough for Dq to involve, typically,
sufficiently many elementary rearranging steps. This was
checked, confirming (see Fig. 5), within statistical errors,
Eq. (4) and the absence of size effects.

In order to compare the GQSM results to the predic-
tions of more conventional methods, we also simulated
biaxial compressions on samples of 1024 and 3025 disks

FIG. 5. Probability distribution function for strain increments
De22 corresponding to Dq � 1023p obtained for the four values
of N by GQSM (continuous curves) and for N � 1024 (crosses)
and N � 3025 (square dots) by MD. The inset shows the dis-
tribution of C�N , where C is the number of lost contacts in one
increment Dq, for the different system sizes.
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using MD, successively imposing deviator increments
Dq � 1023. Contacts obey an elastic unilateral law, with
a normal stiffness equal to 105. After each stress step,
one waits for a new equilibrium state, requesting forces
on each grain to balance up to an accuracy of 1023.
Successive strain increments De

MD
22 are uncorrelated and

distributed according to the same probability law, which
coincides (within statistical uncertainties) as shown on
Fig. 5, with that of increments De22 obtained for the
same value of Dq by GQSM. Similarly, the (power-law)
distribution of the fraction of the total number of contacts
that change within one fixed increment Dq does not
depend on N (Fig. 5).

We therefore conclude that, in a biaxial test, the ax-
ial strain e22 dependence on deviator q, as expressed by
Eqs. (3) and (4), is a Lévy stochastic process. It does
not become deterministic in the thermodynamic limit, but
it is devoid of size effect: the strain versus stress curve
approaches a devil’s staircase with a dense set, on the q
axis, of discontinuities of random magnitudes. Moreover,
it appears not to depend on dynamical parameters (at least
within the accuracy of the present study) and to be deter-
mined by the sole system geometry. These results apply,
without appreciable change in the statistics, throughout the
interval 0 # q�p # 0.2.

The evolution of ey (which can be of either sign, typi-
cally 1 order of magnitude smaller than e22) is somewhat
more complicated, since successive increments dey are not
equidistributed (unlike dW). Leaving a discussion of volu-
metric strains to a future publication, let us further com-
ment here on the behavior of axial [14] strains.

Our results preclude the existence of a constitutive law in
the usual sense. As q is increased, e22 is typically of order
q1�m, but its actual value is essentially unpredictable, with
the remarkable consequence that macroscopic models for
granular mechanics should be of a stochastic, rather than
deterministic, nature. Of course, such a behavior might
be limited to frictionless grains, and is thus perhaps more
relevant for some colloidal glasses than for sand, although
important fluctuations and high noise levels were some-
times reported for soil materials or glass beads. One does
obtain an extremely noisy curve on numerically compress-
ing our system at constant strain rate instead of control-
ling the stress: understandably, between two equilibrium
states that can be relatively far apart, the contact structure
does not consistently oppose any given level of stress, and
the observed response depends on dynamical parameters.
Laboratory tests, at constant strain rate, on such systems
would be sensitively influenced by the apparatus itself. It
will be interesting to study the dependence of parameter m

on grain shape and polydispersity. Preliminary MD results
on dense random packings of monodisperse spheres in 3D
yielded Lévy-distributed large strain steps with a value of
m in the 0.4–0.6 range.

Physically, large strain increments are due to rearrange-
ments involving many contact changes [GQSM steps (ii)
and (iii) have to be repeated]. Had we resorted to the
approximation of small displacements (ASD), in which all
relevant quantities are dealt with to leading order in the
displacements, then, as shown in Ref. [12], no iteration
of steps (ii) and (iii) would have been necessary. Within
the ASD, contacts are replaced one by one, and we have
checked that the resulting strain increment distribution
does possess an average value. This geometric approxi-
mation would ensure [12] uniqueness of the equilibrium
state and a one-to-one correspondence between stress and
strain. The ASD was used for slightly polydisperse disks
on a triangular lattice, in which case it can be justified
and constitutive laws are obtained [12,13] (the second list-
ing of Ref. [11] proposes an independent implementation
of the GQSM, with the ASD). The distinctive mechani-
cal features of model granular assemblies that are reported
here are thus due to the motion of the system in configura-
tion space along a tortuous path between local minima in
a complex potential energy landscape. Cooperative rear-
ranging events are also observed in glassy relaxation [17],
which might open interesting perspectives.

We are grateful to Jean-Philippe Bouchaud for useful
suggestions.
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