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Resonances of the time evolution (Frobenius-Perron) operator P for phase space densities have re-
cently been shown to play a key role for the interrelations of classical, semiclassical, and quantum
dynamics. Efficient methods to determine resonances are thus in demand, in particular, for Hamiltonian
systems displaying a mix of chaotic and regular behavior. We present a powerful method based on
truncating 2 to a finite matrix which not only allows us to identify resonances but also the associated
phase space structures. It is demonstrated to work well for a prototypical dynamical system.

PACS numbers: 05.45.Mt, 05.20.—y

Effectively irreversible behavior of classical Hamilto-
nian systems can be elucidated by studying the phase space
density and its propagator, the Frobenius-Perron operator
P. Because of Liouville’s theorem P can be represented
by an infinite unitary matrix whose spectrum lies on the
unit circle in the complex plane. Nevertheless, means
and correlation functions of observables can relax (see
Fig. 1c¢) with damping factors known as (Ruelle-Pollicott)
resonances [1—-4] of . These resonances have recently
attracted attention, e.g., in a superanalytic approach to
universal fluctuations in quantum (quasi-) energy spectra
which originated from the physics of disordered systems.
In that approach the Frobenius-Perron resonances consti-
tute a link between classical and quantum chaos [5,6].
There is even a recent experiment where quantum finger-
prints of Ruelle-Pollicott resonances are identified [7]. To
further clarify the interrelations between classical, semi-
classical, and quantum behavior, a practical scheme to ac-
tually determine classical resonances is called for which is
free of restrictions of previous investigations, such as hy-
perbolicity, one-dimensional (quasi-) phase space, or iso-
lation of the phase space regions causing intermittency.

Our thus motivated quantitative investigations into Ham-
iltonian systems with mixed phase space, still a largely
unexplored area of great interest and promise, lead us

to the discrete unimodular Frobenius-Perron eigenvalues
(with eigenfunctions localized in islands of regular motion
around elliptic periodic orbits; see Fig. 1a) and to reso-
nances, smaller than unity in modulus (with eigenfunctions
localized on the unstable manifolds of hyperbolic periodic
orbits; see Figs. 2a—2c). Both the discrete spectrum and
the resonances are determined by diagonalizing truncated
Frobenius-Perron matrices P™) and studying the cutoff
dependence of its eigenvalues. Using the information
about eigenfunctions, we then reproduce resonances by
the so-called cycle expansion of periodic-orbit theory and
furthermore through decay rates of correlation functions.
We should add that similarly motivated but technically dif-
ferent (not involving eigenfunctions and employing exter-
nal noise) efforts to determine resonances can be found in
Refs. [8—10].

As a prototypical dynamical system we have employed
the kicked top, i.e., a periodically kicked angular momen-
tum J = (jsinf cosg, j sinf sing, j cosd)) of conserved
length j whose phase space is the sphere J2/j% = 1; we
confront a single degree of freedom with the “azimuthal”
angle ¢ as the coordinate and the cosine of the “polar” an-
gle 6 the conjugate momentum. The dynamics is specified
as a stroboscopic area preserving map M on phase space.
It consists of rotations R (3;), Ry(/3y) about the y and z
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(a) The eigenfunction to the almost unimodular eigenvalue 0.9993 for 7 = 4, Ip.x = 60 is sharply localized on elliptic

islands surrounding a period-3-orbit in phase space. (b) Phase space portrait of the elliptic islands supporting the eigenfunction.
(c) The decay of the correlator C(n) (dots) (with the initial density localized in the region shown in Fig. 2¢) and the decay predicted
by the corresponding resonance 0.8103 (full line) agree well (see also Table II).
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FIG. 2. Eigenfunction to the resonance eigenvalue 0.81 for 7 = 10 and (a) /max = 40, (b) Imax = 60. While the coarse structures
are identical, finer structures appear in the eigenfunction with the higher resolution. (c) Magnification of the region of large amplitude
in (b). The numbers indicate the positions of the three periodic orbits of lengths 1, 2, and 4 which are used in the cycle expansion

up to order nmax = 4.

axes and a “torsion,” i.e., a nonlinear rotation R, (7 cos)
about the z axis which changes ¢ by 7 cosf,

M = Rz(T COSO)RZ(BZ)R)/(B}') . (1)

The equivalent map of the phase space density p is gener-
ated by the Frobenius-Perron operator P,

Pp(cost, @) = p[M ' (cosh, ¢)]. 2)

We keep B, = B, = 1 fixed and vary the torsion constant
T, starting with the integrable case 7 = 0. Increasing val-
ues of 7 bring about more and more chaos until for 7 > 10
elliptic islands have become so small that they are difficult
to detect. We focus on 7 = 4 (roughly 90% of the phase
space dominated by chaos) and 7 = 10 (more than 99%
chaos).

A Hilbert space of phase space functions on the sphere
is spanned by the spherical harmonics Y;,(6, ¢) with
[ =0,1,2,... and |m| = [. These functions are ordered
with respect to phase space resolution by the index /: if all
Y1, with 0 = | = [, are admitted phase space structures
of area roughly 47 /(Imax + 1)* can be resolved. If we
so truncate the infinite Frobenius-Perron matrix P, jip,
we (i) destroy unitarity, (ii) restrict the spectrum to N =
(Imax + 1)? discrete eigenvalues whose moduli cannot ex-
ceed unity, and (iii) renounce the resolution of phase space
structures of linear dimension below ~/47/(Imax + 1).
Upon diagonalizing the truncated N X N matrix P®)
and increasing N we find the “newly born” eigenvalues
close to the origin while the “older” ones move about in
the complex plane. “Very old” ones eventually settle for
good. If the classical dynamics is integrable (7 = 0 or
By = 0), the asymptotic large-N loci are back to the
unit circle, where the full P has its spectrum. But not
so for a mixed phase space: while some eigenvalues
of PW) “freeze” with unit moduli, others come to rest
inside the unit circle as N — . Table I illustrates how
nonunimodular eigenvalues found for the kicked top with
7 = 10 at Ipn,x = 40 remain in their positions as Inax 1S
increased to I« = 50, 60, and 70.

We could pass over such findings and speak of the dan-
ger of tampering with infinity were there not good reasons

for and a physical interpretation of the existence of such
stable nonunimodular eigenvalues.

The following qualitative argument suggests the persis-
tence of nonunimodular eigenvalues as N — o for non-
integrable dynamics. In contrast to regular motion, chaos
comes with a hierarchy of phase space structures which
extends without end to ever finer scales. A truncated
Frobenius-Perron operator PW) must reflect the flow of
probability towards the unresolved scales as a loss, how-
ever large the cutoff N may be chosen.

Arguments from perturbation theory [11,12] indicate
that any nonunitary approximation to a unitary operator
with continuous spectrum has some eigenvalues in po-
sitions near (nonunimodular) resonances of the unitary
operator, i.e., poles of the resolvent in a higher Riemann-
ian sheet. The perturbation series for such an eigenvalue
does not converge but produces, with increasing order, a
sequence of points concentrated in the neighborhood of the
respective resonance. It is intuitive to interpret the freezing
of nonunimodular eigenvalues (which need not be a strict
convergence) as analogous to the “spectral concentration”
known from perturbation theory.

To find further evidence for our interpretation of frozen
eigenvalues as resonances we have looked at the eigenfunc-
tions of PW ), with the following salient results. Eigenval-
ues freezing with unit moduli have eigenfunctions located
on elliptic islands of regular motion surrounding elliptic
periodic orbits in phase space. Such islands are bounded
by invariant tori which form impenetrable barriers in phase
space. We can thus expect the function constant inside the

TABLE I. Resonances appearing for 7 = 10 at Iy, = 40, 50,

60, and 70.

Imax = 40 Imax = 50 Imax = 60 Imax = 70
0.8116 0.8205 0.8103 0.8076
0.7457 0.7547 0.7470 0.7459

—0.7432 —0.7475 —0.7510 —0.7465
—0.0063 —0.0123 —0.0079 —0.0042
+i0.7431 +i0.7515 +i0.7517 +i0.7414
—0.6443 —0.6188 —0.6377 —0.6347
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elliptic islands around a p-periodic orbit and zero outside
to be an eigenfunction of P with eigenvalue unity. Simi-
larly reasoning we expect, for p > 1, the pth roots of unity
to arise as eigenvalues as well; their eigenfunctions should
have constant moduli and be invariant under 7. For the
kicked top with 7 = 4 and [,x = 60 an eigenfunction
with the eigenvalue 0.9993, i.e., almost at unity, is shown
in Fig. la. It is localized on the three islands around an
elliptic orbit of period three (see Fig. 1b) and does have
the two expected partners. We have indeed found frozen
eigenvalues near the pth roots of unity and their eigen-
functions localized near elliptic period-p orbits for p up
to 6; without much further effort such signatures of higher
periods could be identified.

Now on to the eigenvalues freezing with moduli smaller
than unity. Once such freezing has been observed the cor-
responding eigenfunction has approached its final shape on
the resolved phase space scales. The eigenfunctions are
sharply localized around unstable manifolds of hyperbolic
periodic orbits, ones with low periods at first since these
are easiest to resolve; but with growing /,x more complex
orbits of higher periods appear in the “support” of eigen-
functions. Even though all periodic orbits contributing to
the structure of an eigenfunction have similar stability co-
efficients and even though the latter do describe the rate of
mutual departure of neighboring trajectories it would be
too naive to simply identify resonances with stability coef-
ficients; we shall rather have to resort to cycle expansions
further below.

Just as for the eigenvalues there is no strict conver-
gence of the eigenfunctions. With increasing resolution
new structures on finer scales become visible, in correspon-
dence with the infinitely convoluted shape of the unstable
manifolds (see Figs. 2a and 2b). Since no finite approxi-
mation P™W) accounts for arbitrarily fine structures one
encounters the aforementioned loss of probability from
resolved to unresolved scales. Not even in the limit N —
o can the unitarity of P be restored: rather, the eigenfunc-
tions tend to singular objects outside the Hilbert space, in
tune with a continuous spectrum of 7.

The reader may have noticed that all eigenvalues in
Table I are real or almost imaginary. In fact, all eigen-
values we have identified as frozen inside the unit circle
have phases corresponding to those of roots of unity, a
fact demanding explanation. Clearly, since P™W) is real
the eigenvalues are either real or come in complex conju-
gate pairs, but no other phase than zero is distinguished
by that argument. Again, the eigenfunctions offer further
clues. We find that the phases of the complex eigenvalues
are determined by the length p of the shortest periodic or-
bit present in an eigenfunction f as those of the pth roots
of unity. The following intuitive argument indicates that
this is to be expected.

Assume an eigenfunction is mostly concentrated around
a shortest unstable orbit with period p as well as a longer
one with period p’. Denote by &,, a “characteristic
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function” which is constant near the nth point of the
period-p orbit, n = 1...p, and zero elsewhere. The
truncated Frobenius-Perron operator P*) maps 6 p.n IO
T(N)(Sp,,, = rp0pa+1 With the real positive factor r,
smaller than unity accounting for losses, in particular,
to unresolved scales. Independent linear combinations
of the §,, can be formed as fp = Yy—j e275/P§, ,
with k = 1...p. Now consider a sum of two such
functions, g = fpr + fpw, and apply PW)_ For g
to qualify as an approximate eigenfunction we must
obviously have r, = r, and k/p = k'/p’. But then
indeed PNg =~ r,e?™*/Pg and [PNM]Pg ~ rjg. The
phase is thus dictated by the shortest orbit. Needless to
say, the argument is identical to the one used before for
the eigenfunctions living in islands around elliptic orbits,
save for r, = 1 in those regular cases. Since orbits of low
period are most likely to be resolved first, the eigenvalues
found for /,,x = 40 in Table I have phases according to

=1, 2, and 4.

Knowing which orbits are linked to a nonunimodular
eigenvalue, we can adopt a cycle expansion to calculate
decay rates from periodic orbits [13]. A cycle expansion of
the spectral determinant, i.e., the characteristic polynomial
of the Frobenius-Perron operator, allows for the calcula-
tion of resonances in hyperbolic system with high accuracy
[14]. The spectral determinant is expressed in terms of the
traces of the Frobenius-Perron operator TrP" as d(z) =
[T,—, exp(—= TrP") and subsequently expanded as a fi-
nite polynomial up to some order ny,x. Only the first 7y«
traces are required for the calculation of this polynomial.
The traces TrP" are calculated by summing over hyper-
bolic periodic orbits of length n as TrP" = > Taetd=7] detl s
where the 2 X 2 matrix J = dM"(X)/dX is the hnearlzed
map M" evaluated at any of the points of a contributing
period-n orbit and X = (cos#, ¢) the phase space point.
The zeros of the polynomial which are insensitive against
an increase of np,,, are inverses of resonances.

The condition under which the ordinary cycle expansion
of a spectral determinant converges is that all periodic or-
bits are hyperbolic and sufficiently unstable [2,13,14]. But
if we consider only one ergodic region in phase space at a
time, i.e., bar contributions from elliptic orbits, and impose
a stability bound by including only the relatively few hy-
perbolic orbits identified in an eigenfunction of P™), we
can still use the cycle expansion as follows. We assume
the spectral determinant factorized as d(z) = [1'_; di(z)
with one factor d; for the family of eigenfunctions to which
a given set of periodic orbits contributes. Each such fac-
tor d;(z) is then calculated separately with the above well
known expressions but restricting the periodic-orbit sum
for the trace Tr" to the orbits previously identified as
contributing to the eigenfunctions. In Table II resonances
reproduced via the spectral determinant from only a few or-
bits show surprisingly good agreement with the resonance
eigenvalues of PW) for 7 = 10 and I = 60. The index
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TABLE 2. First row: resonances obtained from the truncated
propagator for 7 = 10 and Ipax = 60. Below: Corresponding
results from cycle expansion up to order nmax. The total number
of primitive orbits employed is given in curly brackets. Last row:
Associated decay factors by which C(n) decreases over one time
step, obtained from numerical fit.

Imax = 60 0.8103 —0.7510 0.6597
Nmax = 1 0.2185{1}
Amax = 2 0.7070{2} 0.4969{1}
Nmax = 4 0.7664{3} —0.7483{4} .-
Decay of C(n) 0.8005 0.7697 0.6783

Nmax gives the order up to which the spectral determinant
is expanded, i.e., the length of the longest (pseudo-)orbits
employed. The total number of orbits used is given in
brackets behind the resonances. For the resonance 0.8103
the three relevant orbits of periods 1, 2, and 4 are marked
in the magnified region of the eigenfunction (/p,x = 60)
in Fig. 2c. The first repetition of the single period-2-orbit
contributing to the resonance 0.6597 gives an almost di-
verging contribution to the spectral determinant, thus hin-
dering its expansion to a higher order.

In the cycle expansion the phases of the resonances
are reproduced exactly since they are again directly de-
termined by lengths of orbits. If p is the shortest orbit
length used in d;(z), the polynomial can as well be written
as a polynomial in z” thus allowing the zeros to have the
phases of the pth roots of unity.

As a final check on the physical meaning of our
frozen eigenvalues with moduli smaller than unity as
Frobenius-Perron resonances we have compared these
moduli with rates of correlation decay. In a numerical
experiment we investigated the decay of the correla-
tor  C(n) =[(p(n)p(0)) — (p()p(0))] - [{p(0)p(0)) —
(p(0)p(0))]"!. Depending on the choice of p(0) different
long-time decays are observable. We chose p(0) as cover-
ing the regions where the hyperbolic orbits relevant for a
given resonance are situated. Figure Ic illustrates the very
good agreement between the long-time decay of C(n)
(dots) and the decay as predicted by the corresponding
resonance 0.81 (full line). Together with the resonances at
Imax = 60 Table II displays the associated decay factors
by which C(n) decreases over one time step, obtained
from a numerical fit. Again the agreement is convincing.

In conclusion, we have presented a method to determine
Frobenius-Perron resonances and the associated phase

space structures, applicable to systems with mixed phase
spaces. The acquired knowledge of phase space structures
allows us to check the accuracy to which resonances are
determined by the otherwise independent approaches of
cycle expansion and correlation decay.
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