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Dimension of Fractal Growth Patterns as a Dynamical Exponent
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We consider a conformal theory of fractal growth patterns in two dimensions, including diffusion
limited aggregation (DLA) as a particular case. In this theory the fractal dimension of the asymptotic
cluster manifests itself as a dynamical exponent observable already at very early growth stages. Using
a renormalization relation we show from early stage dynamics that the dimension D of DLA can be
estimated, 1.69 , D , 1.72. We explain why traditional numerical estimates converged so slowly. We
discuss similar computations for other fractal growth processes in two dimensions.

PACS numbers: 05.45.Df, 47.54.+r, 64.60.Ak
The diffusion limited aggregation (DLA) model was in-
troduced in 1981 by Witten and Sander [1]. The model is
important as an example of fractal pattern formation un-
der very simple rules; it was shown to underlie many pat-
tern forming processes including dielectric breakdown [2],
viscous fingering [3], electrochemical deposition [4], and
bacterial growth [5]. The algorithm begins with fixing one
particle at the center of coordinates in d dimensions, and
follows the creation of a cluster by releasing random walk-
ers from infinity, allowing them to walk around until they
hit any particle belonging to the cluster. The fundamental
difficulty of this and similar growth processes is that their
mathematical description calls for solving equations with
boundary conditions on a complex, evolving interface. In
addition, the growth probability for a random walker to hit
the interface (known as the “harmonic measure”) has been
shown to be a multifractal measure [6] characterized by in-
finitely many exponents [7,8]. Until now these difficulties
defied all attempts to understand the fractal properties of
DLA. In fact, even the numerical estimates [9] of the frac-
tal dimension D of DLA clusters turned out to converge
extremely slowly with the number of particles n of the
cluster, leading even to speculations [10] that for n ! `

the clusters were plane filling (i.e., D � 2). In this Letter
we employ a conformal theory of fractal growth processes
in two dimensions, including DLA as a special case. We
show how to compute the dimension from early stage dy-
namics, and explain why in the old techniques convergence
was so miserable. We introduce the novel notion that the
fractal dimension D appears as a dynamical exponent al-
ready at early stages of the growth in which the cluster has
not yet developed a fractal geometry. This exponent is ap-
parent when there are only 1–2 layers of growing particles,
much before it has the geometric meaning of dimension.

For continuous time processes in two dimensions the
above-mentioned difficulties were efficiently dealt with in
the past [11,12] by considering the conformal map from
the unit circle to the advancing interface. This way the “in-
terface” in the mathematical plane remains forever simple,
and the complexity of the evolving interface is delegated to
the dynamics of the conformal map. For discrete particle
growth such a language was developed recently [13–16],
0031-9007�00�85(17)�3608(4)$15.00
showing that a variety of fractals in two dimensions can be
grown by iterating conformal maps.

Once a fractal object is well developed, it is extremely
difficult to find a conformal map from a smooth region to
its boundary, simply because the conformal map is terri-
bly singular on the tips of a fractal shape. Rather, in recent
work it was shown how to grow the cluster by iteratively
constructing the conformal map [13–16]. We briefly sum-
marize the main points of this approach. Consider F�n��w�
which conformally maps the exterior of the unit circle eiu

in the mathematical w plane onto the complement of the
(simply connected) cluster of n particles in the physical z
plane. The unit circle is mapped to the boundary of the
cluster. The map F�n��w� is made from compositions of
elementary maps fl,u ,

F�n��w� � F�n21����fln ,un �w���� , (1)

where the elementary map fl,u transforms the unit circle
to a circle with a “bump” of linear size

p
l around the

point w � eiu . An example of a good elementary map
fl,u was proposed in [13], endowed with a parameter a in
the range 0 , a , 1, determining the shape of the bump.
We employ here a � 2�3. Accordingly the map F�n��w�
adds on a new bump to the image of the unit circle under
F�n21��w�. The bumps in the z plane simulate the accreted
particles in the physical space formulation of the growth
process. Since we want to have fixed size bumps in the
physical space, say, of fixed area l0, we choose in the
nth step ln � l0�jF�n21�0�eiun �j2. The recursive dynam-
ics can be represented as iterations of the map fln ,un�w�:
F�n��w� � fl1,u1 ± fl2,u2 ± · · · ± fln ,un�v�.

The difference between various growth models will
manifest itself in the different itineraries �u1 · · · un�. To
grow a DLA we have to choose random positions un. This
way we accrete fixed size bumps in the physical plane
according to the harmonic measure (which is transformed
into a uniform measure by the analytic inverse of F�n�).
The DLA cluster is fully determined by the stochastic itin-
erary �uk�n

k�1. In Fig. 1 we present a typical DLA cluster
grown by this method to size n � 105. Other fractal clus-
ters can be obtained by choosing a nonrandom itinerary
[16]. A beautiful family of growth patterns is obtained
© 2000 The American Physical Society
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FIG. 1. A DLA cluster, n � 100 000.

from quasiperiodic itineraries: uk11 � uk 1 2pW , where
W is a quadratic irrational number. An example is shown
in Fig. 2, in which W is the golden mean �

p
5 1 1��2.

In [16] it was argued that itineraries obtained by using
other values of quadratic irrationals for W lead to clusters
of different appearance, but the same dimension, which
was estimated numerically to be D � 1.86 6 0.03. In
the same paper other deterministic itineraries (not ob-
tained from circle maps) were shown to lead to clusters
with different dimensions. One (trivial) example that is
nevertheless useful for our consideration below is the
itinerary uk � 0 for all k. Such an itinerary grows a
one-dimensional wire of width

p
l0.

As stressed in [13–16] the advantage of conformal maps
is that they afford us analytic power that is not obtainable
otherwise. To understand this consider the Laurent expan-
sion of F�n��w�:
F�n��w� � F

�n�
1 w 1 F

�n�
0 1 F

�n�
21w21 1 F

�n�
22w22 1 . . . .

(2)

The recursion equations for the Laurent coefficients of
F�n��w� can be obtained analytically, and, in particular,
one shows that [13,14] F

�n�
1 �

Qn
k�1�1 1 lk�a. The first

Laurent coefficient F
�n�
1 determines the fractal dimension

of the cluster, being identical to the Laplace radius which
is the radius of a charged disk having the same field far
away as the charged cluster [14]. Moreover, defining Rn

as the minimal radius of all circles in z that contain the n
cluster, one can prove that [17] Rn # 4F

�n�
1 . Accordingly

one expects that for sufficiently large clusters (to be made
precise below)

F
�n�
1 � n1�D

p
l0 , (3)

as
p

l0 remains the only length scale in the problem when
the radius of the cluster is much larger than the radius of
FIG. 2. A deterministic cluster with a golden mean itinerary,
n � 100 000.

the initial smooth interface (which we take as the unit circle
in this discussion).

These observations lead now to the central development
of this Letter, and to the most important result. Consider a
renormalization process in which we fix the initial smooth
interface, but change l0, and then rescale n such as to get
the “same” cluster. Of course, we need to specify what
do we mean by the “same” cluster, and a natural require-
ment is that the electrostatic field on coarse scales (i.e., far
from the cluster) will remain invariant. In other words,
we should require the invariance of the Laplace radius
F

�n�
1 (and possibly of additional low order Laurent coeffi-

cients) under renormalization. Clearly, for a given itinerary
�uk�n

k�1, F
�n�
1 is a function of n and l0 only. Accordingly,

considering Eq. (3), we note that a renormalization pro-
cess can reach a fixed point if and only if F

�n�
1 �l0� attains

a nontrivial fixed point function F�
1 of the single “scaling”

variable x �
p

l0 n1�D . Obviously in the asymptotic limit
x ¿ 1, F

�n�
1 �l0� must converge to F�

1 which is linear in
x in this regime. The main new findings of this Letter
are that F�

1 exists as a nonlinear function of x, and that
F

�n�
1 �l0� converges (within every universality class) to its

fixed point function F�
1 already for x ø 1.

In principle one can demonstrate the convergence to F�
1

analytically. This is easy to do in the case of the degen-
erate itinerary growing a wire. In this case convergence
is achieved after the addition of 2–3 bumps, even in the
limit l0 ! 0; see Fig. 3. For x ! 0 the function
F�

1 �x� � x2. For other nontrivial itineraries it becomes
increasingly cumbersome to demonstrate the convergence
by hand. With the assistance of the machine we can
demonstrate the convergence in all the other cases. In
Fig. 4 we present F

�n�
1 �l0� 2 1 as a function of x for a
3609
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FIG. 3. The one-dimensional wire. We plot F1�x� 2 1 vs
x � nl1�2

0
and demonstrate the convergence to the asymptotic

nonlinear function F�
1 . The values of l0 used are 1023, 1024,

1025, and 1026.

typical DLA itinerary and for values of l0 ranging between
1028 to 1023. We note that for l0 ! 0 the convergence
to the fixed point function is obtained infinitesimally
close to the initial circle for which F

�n�0�
1 � 1. In fact,

convergence for this itinerary, as well as for all other non-
trivial itineraries, is obtained for n $ nc where nc 	
2p�

p
l0. This is the number of bumps required to obtain

one-layer coverage of the original circular interface. Ob-
viously n

1�D
c

p
l0 ! 0 for l0 ! 0, demonstrating the

convergence to F�
1 for x ø 1. In Fig. 5 we exhibit the

convergence for the golden mean itinerary. Note that
the fixed point functions are different, and they both differ
from the wire case. The main point of this analysis is that
convergence to F�

1 can be obtained for x arbitrarily small
by going to the limit l0 ! 0.

The existence of a fixed point function translates im-
mediately to a calculational scheme. Consider a given
itinerary �uk�N

k�1 of one of the above classes, and calculate
F

�n�
1 �l0� for N . n . nc�l0�. Rescale now l0 ! l0�s,

and calculate F
�n0�
1 �l0�s� for N . n0 . nc�l0�s�. We can

compute D from finding the value n0 which preserves the
Laplace radius under rescaling of l0 by s: �n0�n�1�D �p

s. Since F�
1 is monotonic, there is only one solution:

D �
2�logn0 2 logn�

logs
. (4)

As a first example consider the wire case. Computing
F

�10�
1 �1026� we find that for l0 � 1025 the same value of
3610
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FIG. 4. Convergence to F�
1 for the DLA. We plot F1�x� 2 1

vs x � n1�Dl
1�2
0 with D � 1.7. The values of l0 used are 1023

(upper solid line), 1024 (upper dashed), 1025 (thin solid), 1026

(dotted), 1027 (lower solid), and 1028 (lower dashed). The fixed
point function F�

1 is best approximated by the lowest curve in
the figure. Convergence to the asymptotic nonlinear function
F�

1 is seen for smaller x values when l0 decreases.

F
�n�
1 is obtained for n between 3 and 4. Equation (4) with

s � 10 then predicts 0.796 , D , 1.045. Repeating for
F

�100�
1 �1026� we find the same value of F

�n�
1 �1025� for n

between 31 and 32. From Eq. (4) 0.9897 , D , 1.0173.
We stress that this precision is obtained when F

�n�
1 2 1 is

still 0.0133. In this simple case any desired accuracy in
extracting the dimension of the asymptotic cluster (D � 1)
can be achieved here by decreasing l0 without increasing
n. Second we consider the deterministic itinerary with
golden mean winding number W . Using values of
F

�n�
1 �1026� and F

�n�
1 �1025� between 1.10 and 1.20 we can

bound the dimension of the cluster to 1.8305 , D ,

1.8380. Note that in this case we need to have at least one
layer covering which is obtained only when nc 	 2p�

p
l0.

Finally, we consider DLA. Here the itineraries are sto-
chastic and one could imagine that only under extensive
ensemble averaging one would obtain tight bounds on
D. In fact, we find that using values of F

�n�
1 �1028� and

F
�n�
1 �2 3 1028� between 1.002 and 1.01 we can bound D

as tightly as 1.69 , D , 1.72. Note that to achieve this
accuracy we did not need to go to high values of F

�n�
1 , but

rather used small values of l0 to reach convergence very
early. This demonstrates again the unexpected fact that
the asymptotic dimension appears as a renormalization
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FIG. 5. Convergence to F�
1 for the golden mean itinerary. Data

are the same as in Fig. 4 but x � n1�Dl
1�2
0 with D � 1.83. The

fixed point function F�
1 is best approximated by the lowest curves

for x . 3 3 1022 where the data with l0 � 1028 converges
onto F�

1 .

exponent right after one or a few layers of particles cover
the circle, and very much before F

�n�
1 � n1�D .

At this point we need to address two questions: (i) Why
do classical numerical estimates [9,10] of the fractal di-
mension of DLA converge so slowly? In standard numeri-
cal experiments the radius of gyration of the grown cluster
was plotted in log-log coordinates against the number of
particles, with D estimated from the slope. Examining
our fixed point functions F�

1 (see Figs. 3 and 4) we note
the slow crossover to linear behavior, which is not fully
achieved even for extremely high values of n. Thus reliable
estimates of D from radius of gyration calculations require
inhuman effort, as was indeed experienced by workers in
the field [10]. In the present formulation the appearance of
the asymptotic D as a renormalization exponent already at
early stages of the growth allows a convergent calculation.
(ii) Can the fractal dimension be determined without the
multifractal spectrum? The multiscaling properties of the
harmonic measure have left the impression that computing
the fractal dimension of DLA requires a simultaneous con-
trol of the host of exponents characterizing the measure.
The scaling relation D3 � D�2 [18] strengthened this im-
pression. The approach presented here indicates that 1�D
appears in the dynamics much before the measure becomes
multiscaling. A calculation of D from a few particle dy-
namics is presented in [19].
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