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Caloric Curves and Energy Fluctuations in the Microcanonical Liquid-Gas Phase Transition
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In this paper we study a microcanonical lattice gas model with a constrained average volume. We
show that the caloric curve explicitly depends on the considered transformation of the volume with the
excitation energy and so does not bear direct information on the characteristics of the phase transition.
Conversely, partial energy fluctuations are demonstrated to be a direct measure of the equation of state.
Since the heat capacity has a negative branch in the phase transition region, the presence of abnormally
large kinetic energy fluctuations is a signal of the liquid-gas phase transition.

PACS numbers: 24.10.Pa, 24.60.–k, 64.60.Fr, 64.70.–p
One of the most important challenges of heavy ion
physics is the identification and characterization of the nu-
clear liquid-gas phase transition. Since nuclei contain only
a few hundreds of particles at most we are forced to address
the general problem of the definition and identification of
phase transitions in finite systems. This is the case of many
other microscopic or mesoscopic systems: well-known ex-
amples are melting and vaporization of metallic clusters,
Bose condensation of atoms in traps, and deconfinement of
dense hadronic matter towards quark and gluon plasma. It
has been proposed that the phase transition in finite sys-
tems within the microcanonical ensemble [1,2] may be
signed through an anomalous backbending behavior in the
functional relationship between the temperature and the
excitation energy, the so-called caloric curve. Therefore a
first order phase transition should correspond to a negative
branch for the heat capacity.

Many different measurements of the nuclear caloric
curve have been performed [3], showing however quite
different behaviors. Simultaneously it has been shown that
negative heat capacities can be signed through the occur-
rence of abnormally large kinetic energy fluctuations [4,5].
This new signal of a first order phase transition has been
applied to multifragmentation data and a liquid-gas phase
transition has been tentatively identified [6]. Statistical
models [1,2,7] which are very successful in reproducing
experimental data also show important fluctuations which
support this idea [6]. The link between the observation of
monotonic caloric curves and the measure of negative heat
capacities is the puzzle we want to address in this Letter.

In the liquid-gas phase transition the volume is directly
related to the order parameter, which means that a sec-
ond state variable has to be introduced in order to specify
the volume. In this paper we illustrate within the lattice
gas model numerically solvable without any approxima-
tion that if the system passes through coexistence it can be
traced back from the study of kinetic energy fluctuations
since this signal is directly related to the equation of state.
On the other hand, we show that the caloric curve is a
more indirect way to look for the phase transition because
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it depends not only on the equation of state but also on the
considered path in the state variables plane.

In our implementation of the lattice gas model of Lee
and Yang [8] the L3 sites of a cubic lattice are characterized
by an occupation number t which is defined as t � 0 for
a vacancy, and t � 1 for a nucleon. Particles occupying
nearest neighboring sites interact with an energy e. The
Hamiltonian is given by
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where the second sum runs only over the closest neighbors
Ni of i. The coupling constant e � 25.5 MeV is fixed
so as to reproduce the saturation energy.

In finite systems, the various statistical ensembles are
not equivalent. The elementary ensemble is the micro-
canonical ensemble because its entropy is directly related
to the density of states. Moreover in practical applica-
tions the microcanonical ensemble is most adapted since
the total energy can almost always be defined and/or mea-
sured on an event per event basis. For systems undergoing
a liquid-gas phase transition the volume is also an essen-
tial degree of freedom. Various ensembles [5,9–14] with
a volume fixed through boundary conditions have already
been considered in the lattice gas model context. In actual
experiments however the volume is not defined through
boundary conditions. At best, an average size of the frag-
menting system can be inferred from experimental observ-
ables. From the theoretical point of view one is therefore
forced to consider a statistical ensemble for which the vol-
ume can fluctuate from event to event around an average
value [7]. Different choices can be made to measure the
average size of the system. We present here results with
the one body volume observable proportional to the cubic
radius [15] V̂ �

4p

3A

PA
i�1 r3

i ti where ri is the distance to
the center of the lattice, but the main results of the pa-
per do not depend on this choice. Introducing the associ-
ated Lagrange multiplier l in order to constrain a specific
value for the average volume when maximizing the entropy
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(to get the least biased statistical ensemble), we come to
a microcanonical ensemble defined through the partition
function

Zl�E� �
X
V

WV �E� exp�2lAV � (2)

with the density of states WV �E� having a energy E and a
size V .

In the statistical ensemble (2) the energy E and the
Lagrange conjugate of the volume observable l represent
the two state variables of the system. They are associ-
ated with two equations of state, giving the microcanoni-
cal temperature T21

l � ≠E logZl and the average volume
�V �l as a function of E and l. l can be formally related
to a pressure via Pl � Tll. The ensemble (2) is not the
standard microcanonical ensemble defined by the entropy
S � logWV �E�. To avoid misunderstandings, we shall in
the following note the temperature, pressure, and average
volume by Tl, Pl, and �V �l.

In the calculations shown below a number A � 216
of particles is fixed while L3 is large enough (typically
greater than 203 lattice sites) so that the boundary condi-
tions do not affect the calculations with a constraining l.
The microcanonical results are obtained through a sorting
of canonical events generated with a standard Metropolis
sampling (for more details see [12,13]). If N states are
sampled with a given constraining b and l, the canonical
energy distribution of events reads

Nb,l�E� �
N

zb,l
Zl�E� exp�2bE� , (3)

where zb,l is the canonical partition sum. logNb,l�E�
directly leads to the microcanonical equation of state at
constant l so that

T21
l �E� �

≠Sl�E�
≠E

� b 1
≠ logNb,l�E�

≠E
. (4)

Since this equation is valid for every b, we can use many
canonical samplings at different b to derive the same mi-
crocanonical caloric curve. The agreement between the
different curves provides a strong test of the numerical
sampling [5]. Other tests of the Metropolis procedure can
be found in Ref. [16].

The various isotherms in the �Pl, �V �l� plane are dis-
played in Fig. 1. Far from coexistence the curves Pl��V �l�
at constant temperature are monotonous. However, when
we get close to the coexistence region we observe an
anomalous backbending. The physical origin of this nega-
tive compressibility is completely different from the usual
mean field result which reflects the instability of the ho-
mogenous system with respect to phase separation. In
our exact calculation which naturally includes all inhomo-
geneous partitions conversely this feature corresponds to
equilibrium under specific conservation laws (here mass
3588
FIG. 1. Correlation between pressure Pl � lT and volume
for a system of 216 particles in the ensemble (2). The micro-
canonical temperature is indicated on each isotherm. The thick
line gives the critical isotherm.

number and energy) [9,16]. A backbending is also appar-
ent in the two-dimensional caloric curves, Tl�E� (Fig. 2)
leading to a negative branch in the microcanonical heat
capacity at constant l: C21

l � ≠Tl�E��≠E.
The microcanonical heat capacity can be measured us-

ing partial energy fluctuations [4]. The total energy E
can be decomposed into two independent components, its
kinetic (EK ) and interaction energy (EI ): E � EK 1 EI .

FIG. 2. Temperature as a function of the energy per particle
and the Lagrange parameter for a system of 216 particles in the
microcanonical ensemble (2).
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Since the energy partition directly depends on the partial
entropies SK and SI the kinetic energy variance can be re-
lated in the Gaussian approximation to the heat capacities
[4,17]

s2
K � T2 CKCI

CK 1 CI
, (5)

where CK and CI are the kinetic and interaction micro-
canonical heat capacities calculated for the most probable
energy partition characterized by a microcanonical tem-
perature T . Equation (5) can be inverted to extract from
the observed fluctuations an approximation for the heat
capacity [4]

C � CK 1 CI �
C2

K

CK 2 s
2
K�T2

. (6)

Even if in the following Eq. (6) appears to be very accu-
rate, it should be noticed that it is only the leading order of
a Gaussian approximation and that correction terms can be
evaluated as discussed in [4]. From Eq. (6) we can see that
when the heat capacity becomes negative sK overcomes
the canonical expectation s

2
K�T2 � CK . In the classical

model CK � �3�2�A. It is amazing to observe that the
constraint of energy conservation leads in the phase tran-
sition region to larger fluctuations than in the canonical
case where the total energy is free to fluctuate. This is be-
cause the kinetic energy part is forced to share the total
available energy with the interaction part. When the inter-
action part presents a negative heat capacity the jump from
liquid to gas induces strong fluctuations in the energy par-
titioning. The normalized fluctuations s

2
K�T2

l obtained in
the microcanonical ensemble with a constrained average
volume, �V �l, are shown in the energy-l plane in Fig. 3
together with the isotherms. One can clearly see that up
to the critical temperature the fluctuations are abnormally
large in the coexistence region. From Figs. 2 and 3 it is
apparent that the phase transition signal is visible in the
temperature as well as in the fluctuation observable.

However the experimentally measured caloric curves
are not bidimensional. Indeed, even if different sources
with different excitation energies can be prepared, the
other thermodynamical parameters are not controlled. In
particular, an average value for the freeze-out volume of
a selected ensemble of events can be deduced from inter-
ferometry and correlation measurements or through com-
parisons with statistical models but it cannot be varied
independently of the deposited energy. This means that ex-
periments are sampling a monodimensional curve on the
equation of state surface characterized by a relation be-
tween E and l: l�E�. The resulting caloric curve therefore
depends on the actual path in the thermodynamical pa-
rameters plane. As an example the behavior of the tem-
perature as a function of energy at a constant pressure or
a constant average volume in the subcritical region is dis-
played in the upper part of Fig. 4. In the first case the path
FIG. 3. Isotherms and grey contour plot of the normalized
kinetic energy fluctuations in the Lagrange parameter versus en-
ergy plane. The level corresponding to the canonical expectation
s

2
1�T2 � 1.5 is shown. Thick line: critical isotherm.

l�E� is found solving the implicit equation Pl�E� � const
while in the second case the relation �V �l�E� � const is
used. In the coexistence region the isobars are almost iden-
tical to the iso-l’s since Pl and l differ only by the tem-
perature which is almost constant in the phase transition
region, and a backbending is clearly seen. On the other
hand, at constant average volume a smooth behavior is
observed with a slope change entering the gas phase, as
expected from general thermodynamics (see also [10,14]).
This is due to the fact that the l parameter varies rapidly
in the coexistence region if we ask to have �V � � const

FIG. 4. Thermodynamical quantities in the ensemble (2) for
a transformation at constant pressure (left part) and at con-
stant average volume (right part). Upper panels: caloric curve.
Lower panels: normalized kinetic energy fluctuations compared
to the canonical expectation (lines). Middle panels: heat capac-
ity (symbols) compared to the estimation through Eq. (6) (lines).
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(see Fig. 1). The backbending of the temperature surface
can thus be avoided depending on the path of the consid-
ered transformation and the phase transition signal can be
hidden in the observation of the caloric curve. From these
examples one clearly sees that the derivative of the caloric
curve does not give directly the heat capacity of the con-
sidered ensemble (C21

l � ≠T�≠Ejl) but contains an extra
term which explicitly depends on the transformation l�E�

dT
dE

�
≠T
≠E

Ç
l

1
≠T
≠l

Ç
E

≠l

≠E
. (7)

If l�E� follows a constant pressure path dT
dE �

1
CP

. If
a constant volume transformation �V �l�E��E� � const is
followed, dT

dE �
1

CV
. On the other side partial energy fluc-

tuations depend only upon the state and not on the path
from one state to another and can directly give access to
the equation of state C21

l � ≠T�≠Ejl using Eq. (6). From
Fig. 3 we can see that in the whole phase transition re-
gion the microcanonical fluctuations become anomalously
large. This signals that the system undergoes a first order
phase transition, independently of the path. As an example
the lower part of Fig. 4 shows a constant Pl or �V �l cut
of the bidimensional fluctuation surface shown in Fig. 3.
The comparison of the exact heat capacity Cl with the fluc-
tuation approximation (middle part of Fig. 4) illustrates the
accuracy of the estimation (6).

To summarize, in finite systems the equation of state de-
pends explicitly on the considered statistical ensemble of
events. In particular, a negative heat capacity is a well-
defined signal of a first order phase transition when events
are sorted in constant excitation energy bins. In the case
of the liquid-gas phase transition one is forced to intro-
duce a second thermodynamical variable in order to spec-
ify the volume of the system. Then a monodimensional
curve such as the measured caloric curves can be mislead-
ing. Indeed, many different caloric curves can be generated
depending on the path followed in the thermodynamical
variable plane [7]. In a theoretical model this is not a prob-
lem since all paths can be studied and so the bidimensional
equation of state can be inferred. One may even study the
direction of the strongest curvature anomaly of the ther-
modynamical potential which could be a way to define
the order parameter [4,18]. However, in an experimen-
tal situation this transformation cannot be controlled and
is even hardly defined. Conversely, we have shown that
partial energy fluctuations can provide a direct measure of
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the heat capacities. Considering a statistical ensemble of
states characterized by total energy and an average volume
we have shown that abnormal fluctuations are a signal of a
first order phase transition. In this case kinetic energy fluc-
tuations in the phase transition region are indeed related to
the isobar heat capacity CP which is known to diverge.

The connection to experimental fragmentation data is
straightforward. The microcanonical ensemble is relevant
for the analysis of experimental data because of the ab-
sence of a heat bath and since using calorimetry techniques
the events can thus be sorted in constant energy bins, i.e.,
in microcanonical ensembles. As far as the freeze-out vol-
ume is concerned, the absence of a confining box implies
that this variable can be known at best in average, leading
to the statistical ensemble (2). Therefore, we expect that
the partial energy fluctuations will present a strong anom-
aly if the multifragmenting nuclear system is undergoing
a liquid-gas phase transition.
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