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A new class of dynamic symmetries is introduced. It is suggested that an element of this class,
associated with zeros of Bessel functions, be used to describe spectra of nuclei at or around the critical
point of the U�5�-SO�6� shape phase transition, and, in general, spectra of systems undergoing a (second
order) phase transition between the algebraic structures U�n 2 1� and SO�n�.

PACS numbers: 21.60.Fw, 21.10.Re
Dynamic symmetries have provided a useful tool to de-
scribe properties of several physical systems. In the com-
mon definition [1], a dynamic symmetry is that situation
in which the Hamiltonian operator, H, can be written
in terms of Casimir operators Ci of a chain of algebras
G . G0 . G00 . . . . . The most notable examples are the
dynamic symmetries of the interacting boson model [2]
in nuclear physics and those of the vibron model [3] in
molecular physics. Dynamic symmetries of this type can
be easily recognized by analyzing the algebraic structure of
the problem. By breaking the algebra G into all its subal-
gebra chains, one can find all possible dynamic symmetries
of G. In the interacting boson model, for example, where
G � U�6�, there are three possible dynamic symmetries
usually labeled by the first subalgebra U�5�, SU�3�, SO�6�
appearing in the chain. Dynamic symmetries are related
to exactly solvable problems and produce all results for
observables in explicit analytic form. As such they are
extremely useful in the analysis of experimental data and
have led to major discoveries [4].

In this Letter, I want to point out that there are other
classes of dynamic symmetries that could be useful in the
analysis of experimental data and which are also related to
exactly solvable problems. These new symmetries describe
systems undergoing phase transitions between the dynami-
cal symmetries of the algebraic structure G and therefore
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extend the concept of dynamic symmetry to the most chal-
lenging and sensitive situation one may encounter in quan-
tal systems.

The symmetries I wish to introduce cannot be recog-
nized easily by looking at the algebra G, but rather result
from consideration of differential equations

Dc � Ec , (1)

where D is the differential operator representing the
Hamiltonian H. In order to make things concrete, I
construct here explicitly one of these cases, that has
applications to the study of shape phase transitions in
nuclei. Consider the Bohr Hamiltonian [5]
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This Hamiltonian lives in a five-dimensional space with
two intrinsic variables b, g and three Euler angles ui�i �
1, 2, 3�. When the potential depends only on b, V �b, g� �
U�b�, by writing

C�b, g, ui� � f�b�F�g, ui� (3)

one can separate variables in the standard way [6]
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Introducing reduced energies and potentials ´ �
2B
h̄2 E, u �

2B
h̄2 U, one can rewrite the equation in the b variable as∑
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By setting w�b� � b3�2f�b� one obtains
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The differential equation (6) possesses several dynamical
symmetries of the type suggested here. As an example,
I now discuss a case applicable to the study of nuclear
spectra at the critical point of the U�5�-SO�6� [vibrator to
g-unstable rotor] shape phase transition. To this end, con-
sider the case in which the potential is a five-dimensional
infinite well

u�b� � 0, b # bw ,

u�b� � `, b . bw .
(7)

In this case one obtains a Bessel equation with
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with k � ´1�2. The boundary condition w�bw� � 0 de-
termines the eigenvalues to be

Ej,t �
h̄2

2B
k2

j,t , kj,t �
xj,t

bw
, (9)

where xj,t is the jth zero of Jt13�2�z�, and the
eigenfunctions

wj,t�b� � cj,tJt13�2�kj,tb� ,

fj,t�b� � cj,tb23�2Jt13�2�kj,tb� .
(10)

The normalization constants cj,t can be obtained by im-
posing the condition

Z `

0
b4 dbf2�b� � 1 . (11)

This problem is thus exactly solvable. The correspond-
ing symmetry will be denoted by E�5� since the Bessel
functions form a basis for the representations of the
Euclidean group [7], and five is the number of dimensions
of the problem. In general, all problems for which the
eigenvalues of H are given in terms of zeros of special
functions form another class of exactly solvable problems
and hence of dynamic symmetries, which can be called
“representation symmetries,” since they are related to the
representations of some group G̃. The case in which the
special function is the Bessel function is an element of
this class. Other elements are formed, for example, by the
zeros of the Airy functions, which appear for a potential
u�b� ~ b.

Once one has the zeros of the special functions, one can
calculate all observables. Rather than giving those values,
I give in Table I the excitation energies of the lowest states
for this symmetry, normalized to the energy of the first
excited state.

It should be noted that the symmetry fixes uniquely the
values of the energy eigenvalues. Only an overall scale is
needed in comparing with experiment. The spectrum cor-
responding to Eq. (9) is shown in Fig. 1. For each t, the
values of the allowed angular momenta are obtained by the
usual reduction SO�5� . SO�3� [8], which is still a sym-
metry of the problem, and are given in Table IV of that

TABLE 1. Excitation energies of the E�5� symmetry.

j � 1 j � 2 j � 3 j � 4

t � 0 0 3.03 7.58 13.64
t � 1 1 4.80 10.11 16.93
t � 2 2.20 6.78 12.86 20.44
t � 3 3.59 8.97 15.81 24.16
reference. Particularly noteworthy from Table I are the ra-
tios E41,2 �E21,1 � 2.20, E21,2�E21,1 � 2.20 and E02,0�E21,1 �
3.03, where the states are denoted by Lj,t .

Electromagnetic transition rates can be calculated by
taking matrix elements of the transition operators. Particu-
larly interesting are the matrix elements of the quadrupole
operator
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where t is a scale factor. The g, ui part of the calculation
can be done in the standard way. One is left with the
b partZ `

0
bfj,t�b� fj0,t0�b�b4 db � Ij,t;j0,t0 . (13)

Evaluation of these integrals, as well as of the g, ui part,
gives the results of Fig. 1. Here rather than the matrix
elements, the B�E2� values are shown. [B�E2; L ! L0� �
j�LjT jL0 � j 2

2L11 .] Again it should be noted that the symmetry
fixes uniquely the values of the matrix elements. All E2
transition rates are given in terms of an overall scale. Of
great interest are results for the ratios R �

B�E2;41,2!21,1�
B�E2;21,1!01,0� �

1.68, R0 �
B�E2;21,2!21,1�
B�E2;21,1!01,0� � 1.68, R00 �

B�E2;02,0!21,1�
B�E2;21,1!01,0� �

0.86.
The dynamic symmetries described here are of interest

in all those situations where the potential has a flat behavior
as a function of some coordinate. This situation appears
typically when the system undergoes a phase transition.
In the case discussed here the phase transition is in the
coordinate b (shape phase transition) and corresponds to
the U�5�-SO�6� transition of the algebraic structure U�6�.
The potentials just before, at, and just after the phase tran-
sition, obtained from the Hamiltonian of the interacting
boson model by the method of intrinsic or coherent states
[9–11] are shown in Fig. 2. This potential is given, for the
group coherent states, by [12]

u�b� �
1
2

�1 2 h�b2 1
h

4
�1 2 b2�2, (14)

where h is the control parameter. At, and around the criti-
cal point h � 1

2 , the potential has a flat behavior. Hence
the dynamic symmetry associated with the zeros of the
Bessel functions is a good starting point to describe the ex-
perimental situation at the critical point of the U�5�-SO�6�
shape phase transition in nuclei. Since several nuclei are
in this situation �Xe, Ba, . . .�, the symmetry can be used
for these cases, as will be discussed in the accompanying
paper [13].

In general, the symmetries associated with the zeros of
the Bessel functions can be used to describe the spec-
tra of systems undergoing phase transitions of the type
U�n 2 1�-SO�n�. All these phase transitions should have a
3581
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FIG. 1. Schematic representation of the lowest portion of the spectrum of the five-dimensional infinite well [E�5� symmetry].
Energies are in units of the energy of the first excited state, E21,1 . B�E2� values are in units of B�E2; 21,1 ! 01,0� � 100.
universal behavior in their spectra. The distinguishing fea-
tures of these spectra are large and positive anharmonicities
(as one can see in Fig. 1) and specific energy and intensi-
ties ratios.

In conclusion, I have suggested a new class of dynamic
symmetries, associated with zeros of special functions,
and shown explicitly how they can be used to describe
properties of nuclei at the critical point of the U�5�-SO�6�
shape phase transition. The symmetry described here can
also be used for other second order transitions such as
the U�3�-SO�4� transition which applies to van der Waals
molecules [3]. This application will be presented else-
where. Here I point out that this class of dynamic sym-
metry can be enlarged by considering potentials which are
finite wells

u�b� � 0, b # bw ,

u � D, b . bw .
(15)

These problems are also exactly solvable, except that the
solutions are given not by the zeros of special functions but
by a transcendental equation involving those special func-
tions at the matching point bw . In the case of applications
to nuclei, these other symmetries are particularly impor-
tant and are related to the shape phase transitions for finite
boson number N in the interacting boson model. A com-
plete description of these symmetries, their relation with
the infinite N case presented here and with the algebraic
finite N solution of the interacting boson model for the
3582
transitional class U�5�-SO�6� given recently in Ref. [14],
will be presented in a longer publication.

Another enlargement of the concept of dynamic sym-
metry introduced here is that of considering Hamiltonians

FIG. 2. Potential energy surfaces for the U�5�-SO�6� shape
phase transitions obtained from the interacting boson model
Hamiltonian by the method of “group” coherent states.
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more general than Eq. (2), obtained by adding to it Casimir
operators of the subalgebras SO�5� . SO�3�. For example
by adding the Casimir operator of the subalgebra SO�3�
one obtains the energy formula

E�j, t, nD, L, ML� � E0 1 Ak2
j,t 1 CL�L 1 1� , (16)

to be compared with that of the SO�6� symmetry [8]

E�s, t, nD, L, ML� � E0 1 As�s 1 4� 1 Bt�t 1 3�
1 CL�L 1 1� . (17)

One can observe that at the critical point the number of pa-
rameters is reduced by one, since the j and t dependence
is given by k2

j,t .
Finally, symmetries based on zeros of special functions

can also be used to discuss the U�5�-SU�3� shape phase
transition in nuclei. However, this phase transition involves
both variables b and g simultaneously and its treatment is
much more complex than the case discussed in this article.
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