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We propose a chaotic inflation model in supergravity. In the model the Kähler potential has a Nambu-
Goldstone–type shift symmetry of the inflaton chiral multiplet which ensures the flatness of the inflaton
potential beyond the Planck scale. We show that chaotic inflation naturally takes place by introducing a
small breaking term of the shift symmetry in the superpotential. This may open a new branch of model
building for inflationary cosmology in the framework of supergravity.

PACS numbers: 98.80.Cq, 04.65.+e
The inflationary expansion of the early universe [1] is
the most attractive ingredient in modern cosmology. This
is not only because it naturally solves the long-standing
problems in cosmology, that is the horizon and flatness
problems, but also because it accounts for the origin of den-
sity fluctuations [2] as observed by the Cosmic Background
Explorer (COBE) satellite [3]. Among various types of in-
flation models proposed so far, the chaotic inflation model
[4] is the most attractive since it can realize an inflationary
expansion even in the presence of large quantum fluctua-
tions at the Planck time. In fact, many authors have used
the chaotic inflation model to discuss a number of interest-
ing phenomena such as preheating [5], superheavy particle
production [6], and primordial gravitational waves [7] in
the inflationary cosmology [1].

On the other hand, supersymmetry [8] is widely dis-
cussed as the most interesting candidate for the physics
beyond the standard model since it ensures the stability of
the large hierarchy between the electroweak and the Planck
scales against radiative corrections. This kind of stabil-
ity is also very important to keep the flatness of inflaton
potential at the quantum level. Therefore, it is quite nat-
ural to consider the inflation model in the framework of
supergravity.

However, the above two ideas, i.e., chaotic inflation and
supergravity, have not been naturally realized simultane-
ously. The main reason is that the minimal supergravity
potential has an exponential factor, exp� w

�
i wi

M2
G

�, which pre-
vents any scalar fields wi from having values larger than
the gravitational scale MG � 2.4 3 1018 GeV. However,
the inflaton w is supposed to have a value much larger
than MG at the Planck time to cause the chaotic inflation.
Thus, the above effect makes it very difficult to incorpo-
rate the chaotic inflation in the framework of supergravity.
In fact, all of the existing models [9,10] for chaotic infla-
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tion use rather specific Kähler potential, and one needs a
fine-tuning in the Kähler potential since there is no sym-
metry reason for having such specific forms of these po-
tentials. Thus, it is very important to find a natural chaotic
inflation model without any fine-tuning.

In this Letter, we propose a natural chaotic inflation
model where the form of Kähler potential is determined
by a symmetry. With this Kähler potential the inflaton
w may have a large value w ¿ MG to begin the chaotic
inflation. Our models, in fact, need two small parameters
for successful inflation. However, we emphasize that the
smallness of these parameters is justified by symmetries
and hence the model is natural in ’t Hooft’s sense [11].

The existence of a natural chaotic inflation model may
open a new branch of inflation-model building in super-
gravity, since most of the model building in supergravity
has been concentrated on other types of inflation models
(e.g., hybrid inflation model, etc. [12]). Furthermore, we
consider that future astrophysical observations [13,14] will
be able to select types of inflation models.

Our model is based on the Nambu-Goldstone–type shift
symmetry of the inflaton chiral multiplet F�x, u�. Namely,
we assume that the Kähler potential K�F, F�� is invariant
under the shift of F,

F ! F 1 iCMG , (1)

where C is a dimensionless real parameter. Thus, the
Kähler potential is a function of F 1 F�, K�F, F�� �
K�F 1 F��. It is now clear that the supergravity effect
eK�F1F�� discussed above does not prevent the imaginary
part of the scalar components of F from having a larger
value than MG . We identify it with the inflaton field w. We
also stress that the present model overcomes the so-called
h problem [12] and it is an alternative to other inflation
© 2000 The American Physical Society
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models such as D-term inflation models [15] and running
inflaton mass models [16]. However, as long as the shift
symmetry is exact, the inflaton w never has a potential and
hence it never causes the inflation. Therefore, we have to
introduce a small breaking term of the shift symmetry in
the theory. The simplest choice is to introduce a small
mass term for F in the superpotential,

W � mF2. (2)

Then, we have the potential,

V � eK

Ωµ
≠2K

≠F≠F�

∂21

DFWDF�W� 2 3jW j2
æ

, (3)

with

DFW �
≠W
≠F

1
≠K�F 1 F��

≠F
W . (4)

Here, F denotes the scalar component of the superfield F

and we have set MG to be unity. We easily see that V !
2` as jwj ! ` with F 1 F� � 0 and the chaotic infla-
tion does not take place, where w � 2i�F 2 F���

p
2.

In this Letter, we propose instead the following small
mass term in the superpotential introducing a new chiral
multiplet X�x, u�:

W � mXF . (5)

Notice that the present model possesses U�1�R symmetry
under which

X�u� ! e22iaX�ueia� ,

F�u� ! F�ueia� ,
(6)

and Z2 symmetry under which

X�u� ! 2X�ueia� ,

F�u� ! 2F�ueia� .
(7)

The above superpotential is not invariant under the shift
symmetry of F. However, we should stress that the present
model is completely natural in ’t Hooft’s sense [11], since
we have an enhanced symmetry (the shift symmetry) in the
limit m ! 0. That is, we consider that the small parameter
m is originated from small breaking of the shift symmetry
in a more fundamental theory. We consider that as long as
m ø O �1�, the corrections from the breaking term Eq. (5)
to the Kähler potential are negligibly small. (The Kähler
potential may also have the induced breaking terms such
as K � jmFj2 1 . . . . However, these breaking terms are
negligible in the present analysis as long as jwj & m21.)
Then, we assume that the Kähler potential has the shift
symmetry Eq. (1) and the above U�1�R 3 Z2 symmetry
neglecting the breaking effects,

K�F, F�, X, X�� � K��F 1 F��2, XX�� . (8)

In the following analysis we take, for simplicity:

K �
1
2

�F 1 F��2 1 XX� 1 . . . . (9)

Dynamics of inflation.—The Lagrangian density
L�F, X� is now given by

L�F, X� � ≠mF≠mF� 1 ≠mX≠mX� 2 V �F, X� ,
(10)

with the potential V �F, X� given by

V �F, X� � m2eK �jFj2�1 1 jXj4� 1 jXj2

3 �1 2 jFj2 1 �F 1 F��2

3 �1 1 jFj2��� , (11)

where we have neglected higher order terms in the
Kähler potential Eq. (9) whose effects will be discussed
later. Here, X denotes also the scalar component of the
superfield X. Now, we decompose the complex scalar
field F into two real scalar fields as

F �
1
p

2
�h 1 iw� . (12)

Then, the Lagrangian density L�h, w, X� is given by

L�h, w, X� �
1
2

≠mh≠mh 1
1
2

≠mw≠mw

1 ≠mX≠mX� 2 V �h, w, X� , (13)

with the potential V �h, w, X� given by
V �h, w, X� � m2 exp�h2 1 jXj2�

3

∑
1
2

�h2 1 w2� �1 1 jXj4� 1 jXj2
Ω
1 2

1
2

�h2 1 w2� 1 2h2

µ
1 1

1
2

�h2 1 w2�
∂æ∏

. (14)
Note that h and jXj should be taken as jhj, jXj & O �1�
because of the presence of the eK factor. On the other
hand, w can take a value much larger than O �1� since eK

does not contain w. For h, jXj ø O �1�, we can rewrite
the potential as

V �h, w, X� �
1
2

m2w2�1 1 h2� 1 m2jXj2. (15)

At around the Planck time, we may have a region [4] where
�w2 	 �=w�2 	 V �w� 	 1 �initial chaotic situation� .
(16)

Here the dot represents the time derivative. In this region
the classical description of the w field dynamics is feasible
because of jwj ¿ O �1� though quantum fluctuations are
dw � O �1�. Then, as the universe expands, the potential
energy dominates and the universe begins inflation.

Since the initial values of the inflaton w�0�
are determined so that V �w�0�� 	 1

2m2w�0�2 	 1,
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w�0� 	 m21 ¿ 1. [Notice that one has only to demand
w�0� * 15.0 in order to solve the flatness and horizon
problems [1].] For such large w the effective mass of h

becomes much larger than m and hence it quickly settles
down to h � 0. On the other hand, the X field has a
relatively light mass m and slowly rolls down toward the
origin (X � 0). With h � 0, the potential Eq. (15) is
written as

V �w, X� �
1
2

m2w2 1 m2jXj2. (17)

Since w ¿ 1 and jXj , 1, the w field dominates the po-
tential and the chaotic inflation takes place. The Hubble
parameter is given by

H �
mw
p

3
. (18)

During the inflation both w and X satisfy the slow roll
condition (jV 00

V j ø 1, 1
2 j

V 0

V j2 ø 1, where the dash repre-
sents the derivative of w or X) and hence the time evolu-
tions are described by

3H
dw

dt
� 2m2w , (19)

3H
dX
dt

� 2m2X . (20)

Here and hereafter, we assume that X is real and positive
making use of the freedom of the phase choice. From the
above equations we obtain

µ
X

X�0�

∂
�

µ
w

w�0�

∂
, (21)

where w�0� and X�0� are the initial values of w and X
fields. Therefore, X decreases faster than w. At the end of
inflation, i.e., w � 1 (jV 00

V j 	 1
2 j

V 0

V j2 	 1), X is given by

X & m , (22)

where we have used X�0� & 1 and w�0� 	 m21. We see
that the X field becomes much smaller than 1 (m 	 1025

as shown below). The density fluctuations produced by
this chaotic inflation are estimated as [17]

dr

r
�

1

5
p

3p

m

2
p

2
�w2 1 X2� . (23)

Since X ø w, the amplitude of the density fluctuations
is determined only by the w field and the normalization
at the COBE scale (dr�r � 2 3 1025 for wCOBE � 14
[3]) gives

m � 1013 GeV . (24)

(The spectral index ns � 0.96 for wCOBE � 14.)
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After inflation ends, an inflaton field w begins to os-
cillate and its successive decays cause reheating of the
universe. In the present model the reheating takes place
efficiently if we introduce the following superpotential:

W � lXHH̄ , (25)

where H and H̄ are a pair of Higgs doublets whose R
charges are assumed to be zero and l is a constant [18].
Then, we have the coupling of the inflaton w to the Higgs
doublets as

L 	 lmwHH̄ , (26)

which gives the reheating temperature

TR 	 109 GeV

µ
l

1025

∂ µ
m

1013 GeV

∂1�2

. (27)

In order to avoid the overproduction of gravitinos, the re-
heating temperature TR must be lower than 109 GeV [19],
which requires the small coupling l & 1025. The small
coupling l is naturally understood in ’t Hooft’s sense
[11] provided that HH̄ is even under the Z2 symmetry in
Eq. (7).

So far we have taken the minimal Kähler potential and
neglected higher order terms such as �F 1 F��4, jXj4,
and . . . . Here, we make a comment on the higher terms
in the Kähler potential. Since the leading quadratic terms
make the expectation values of h and X fields less than 1,
the inflation dynamics is almost unchanged in the presence
of the higher terms. The only relevant difference comes
from the z jXj4 (z : constant) term which induces the ef-
fective mass of X given by

m2
X � 2m2 2 2zm2w2 � 22zm2w2. (28)

Thus, z should be negative to ensure the positiveness of
m2

X . If jz j * 1, the effective mass becomes larger than
the Hubble parameter and the X quickly settles down to
X � 0 without slow roll.

We have shown that a chaotic inflation naturally takes
place if we assume that the Kähler potential has the
Nambu-Goldstone–type shift symmetry of the inflaton
chiral multiplet F and introduce a small breaking term of
the shift symmetry in the superpotential Eq. (5). Unlike
other inflation models the chaotic inflation model has no
initial value problem and hence it is the most attractive.
However, it had been difficult to construct a natural
chaotic inflation model in the framework of supergravity
because the supergravity potential generally becomes very
steep beyond the Planck scale. Therefore, the existence of
a natural chaotic inflation model may open a new branch
of inflation-model building in supergravity. Furthermore,
the chaotic inflation is known to produce gravitational
waves (tensor metric perturbations) [7] which might be
detectable in future astrophysical observations [13,14].
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