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Exact Monte Carlo Method for Continuum Fermion Systems
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We offer a new proposal for the Monte Carlo treatment of many-fermion systems in continuous space.
It is based upon diffusion Monte Carlo with significant modifications: correlated pairs of random walkers
that carry opposite signs, different functions “guide” walkers of different signs, the Gaussians used
for members of a pair are correlated, and walkers can cancel so as to conserve their expected future
contributions. We report results for free-fermion systems and a fermion fluid with 14 3He atoms, where
it proves stable and correct. Its computational complexity grows with particle number, but slowly enough
to make interesting physics within the reach of contemporary computers.

PACS numbers: 02.70.Lq, 05.10.Ln, 31.15.–p
Monte Carlo methods provide powerful tools for quan-
tum many-body physics [1,2]. They include Green’s func-
tion Monte Carlo [3], diffusion Monte Carlo (DMC) [4],
or path integral Monte Carlo [5] that give, at least for mod-
erate size bosonic systems, answers with no uncontrolled
approximations. Such accurate treatment of fermionic
systems has been made difficult by a “sign problem.”
Progress in the application of quantum Monte Carlo to
condensed matter physics, to electronic structure, and to
nuclear physics has been impeded for years by the lack of
exact and efficient methods for dealing with fermions.

We offer a new proposal for solving many-fermion sys-
tems by an extension of DMC. In the systems we have
studied, the signal-to-noise ratio of the Monte Carlo es-
timates is constant at long imaginary times, by contrast
to the behavior of ordinary DMC where they decay expo-
nentially [2]. Except for the use of a short-time Green’s
function, no approximations—physical, mathematical, or
numerical—are made. The effect of a finite imaginary
time step is easily controlled.

It is no surprise that Monte Carlo methods can solve the
Schrödinger equation for bosonic systems. Let �R denote
all coordinates of an N-body system and V � �R� be the po-
tential at �R.∑
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This equation also describes the diffusion of a random
walker in a 3N dimension space in which the potential
V � �R� serves as a generalized absorption rate. The potential
in physical problems can be unbounded so that a direct
simulation of that diffusion will be inefficient. Some form
of importance sampling has been highly useful. In the
standard DMC [3,4], this is a technical device for accelera-
ting the convergence; in our new method it becomes an
essential feature.

DMC uses an “importance” or “guiding” function
cG� �R� and a trial eigenvalue ET to construct a random
walk. A simple version is as follows: Set h̄2�m � 1.
Using a fixed step in imaginary time, dt, a walker at
�R is (a) moved to �R 1 dt �= lncG� �R�; (b) then each
coordinate is incremented by an element of a vector
�U, a Gaussian with mean zero and variance dt; fi-
nally, (c) each walker is turned into M walkers with
�M� � exp�dt�ET 2 ĤcG� �R��cG� �R��	, where Ĥ is the
Hamiltonian.

The resulting random walk has expected density

f� �R, t� � cG� �R�
X
k

ak exp��ET 2 Ek�t�fk� �R� , (2)

where fk� �R� are eigenfunctions of Ĥ with eigenvalues Ek ,
and ak are expansion coefficients. At large t, f� �R, t� is
dominated by that f0 having the lowest eigenvalue E0.
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We alter DMC in the following ways: (i) To repre-
sent an antisymmetric wave function that is positive and
negative, we use walkers, � �R1

m , �R2
m �, that add or subtract

their contributions to expectations. The computation now
involves ensembles of pairs of walkers carrying opposite
signs. (ii) Two distinct functions, c

6
G � �R� are used to guide

the 6 walkers. (iii) The Gaussians �U6 for the paired walk-
ers are correlated; �U2 is obtained by reflecting �U1 in the
perpendicular bisector of the vector �R1 2 �R2. (iv) The
overlapping distributions that determine the new �R6 are
added allowing positive and negative walkers to cancel,
but preserving expected values.

In a Monte Carlo calculation, we “project” quantities
by calculating integrals weighted with some trial function,
say cT �R�. In DMC the energy eigenvalue, E0, can be
determined from

E0 �

R
ĤcT � �R�f0� �R� d �RR
cT � �R�f0� �R� d �R

�

P
m

ĤcT � �Rm�
cG� �Rm�P

m

cT � �Rm�
cG� �Rm�

, (3)

replacing integrals by sums over positions of the random
walk.

In our modified dynamics, Eq. (3) becomes
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If � �R1
m 	 and � �R2

m 	 follow the same dynamics, then be-
cause the fermion and boson energies satisfy EA . ES , the
values of the numerator and the denominator of Eq. (4)
decay exponentially at large t. Some correlation among
walkers is essential. This observation is reinforced by not-
ing that the requirement that fermion wave functions be
antisymmetric is a global condition that cannot be satisfied
by independent walkers. It will be necessary to have dy-
namics that distinguish between walkers of different signs.
These motivate aspects (ii) and (iii) of our method above.

The density that one obtains naturally from a random
walk is the symmetric ground state. In order for Eq. (4)
to have an asymptotically bounded signal-to-noise ratio,
walkers of opposite signs must be able efficiently to can-
cel. This justifies modification (iv) given above. The need
for cancellation has been a theme of research starting with
the work of Arnow et al. [6]. The need for distinct dy-
namics for positive and negative walkers was stressed in
[7]. That these two aims could be accomplished by appro-
priate correlation among walkers was pointed out by Liu,
Zhang, and Kalos [8]. The use of distinct guiding func-
tions is new; it connects the different algorithmic ideas to
permit the treatment of general potentials.

Stable results can be obtained using correlated pairs
only. Unbiased results are ensured because the actual
3548
histories—apart from cancellation—follow ordinary dif-
fusion Monte Carlo with particular choices of guiding
functions. Thus “projections”— i.e., averages over the
walks such as appear in Eq. (4), are unbiased. Because
such averaging is linear in the density of the walks, they
are unchanged by the use of pairs of correlated walkers.
Finally, as we shall discuss, cancellation can be carried
out so that averages weighted by antisymmetric functions
are unchanged.

Let wA� �R� and wS� �R� be trial functions for the fermionic
and symmetric ground states of the Hamiltonian. These
can be any of the functions used in variational studies of
these systems [9]. Define

c6
G � �R� �

q
w

2
S� �R� 1 c2w

2
A� �R� 6 cwA� �R� . (5)

The following properties of these two functions are sig-
nificant: (a) they are positive; (b) when c is small, they are
dominated by wS , so that opposite walkers behave simi-
larly; (c) c

1
G transforms under an odd permutation P

as c
1
G �P �R� � c

2
G � �R�. As mentioned above we modify

simple DMC in several ways. The “drift” is applied in the
usual way to walkers assumed to be at �R6

0 , using the two
guiding functions:

�R1 � �R1
0 1 dt �= lnc1

G � �R1� ,

�R2 � �R2
0 1 dt �= lnc2

G � �R2� .
(6)

Diffusion of the walkers, however, is carried out in a cor-
related way: let �U1 be a vector of 3N Gaussian random
variables each of mean zero and variance dt. New trial
positions �R6

n are now given by

�R1
n � �R1 1 �U1; �R2

n � �R2 1 �U2, (7)

where the random vector U2 is obtained by reflection in
the perpendicular bisector of the vector �R1 2 �R2. This
choice of correlated dynamics is motivated by its success
in solving fermionic harmonic oscillator problems [10] and
because it guarantees that two diffusing walkers meet in
any number of dimensions, providing efficient cancellation
in many-body systems.

Walker cancellation is achieved by subtracting weighted
estimates of their arrival at a possible common point, say
�R1

n . Now

G� �R0 2 �R� �
exp�2� �R0 2 �R�2��2dt��

�2pdt�3N�2 (8)

is the Gaussian density used in DMC.
To assess the degree of cancellation, we now subtract

G� �R1
n 2 �R2� from G� �R1

n 2 �R1� weighted, respectively,
with the inverse of the importance functions, and with the
expected total future contribution to any projected quantity.
The analysis of “forward walking” [1,11,12] allows one
to determine ratios of future contributions. In order for
cancellation to have no net change in the expected value
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of projections, a positive walker at �R1
n must survive to the next time step with probability

P1� �R1
n ; �R1, �R2� � max

"
0, 1 2

B2� �R1
n j �R2�G� �R1

n 2 �R2�c1
G � �R1

n �
B1� �R1

n j �R1�G� �R1
n 2 �R1�c2

G � �R1
n �

#
. (9)
In the particular form of DMC described above, the
branching factors, B1� �R j �R1� and B2� �R j �R2�, depend
only on the coordinates after diffusion:

B6� �R j �R6� � exp

Ω
dt

∑
ET 2

Hc
6
G � �R�

c
6
G � �R�

∏æ
. (10)

An analogous expression is used for negative walkers.
An isolated walker may appear as a result of different

branching factors at � �R1
m 	 and � �R2

m 	; if, with probability
one-half, one generates a walker of opposite sign by inter-
changing the coordinates of two like-spin particles, then a
pair is reconstituted that preserves future expectations.

To determine the energy, we use the estimator of Eq. (4).
A sharp indication of the stability of the calculation is the
behavior of its denominator

D �

∑
cT � �R1

m �
c

1
G � �R1

m �
2

cT � �R2
m �

c
2
G � �R2

m �

∏
. (11)

In a naive calculation, D decays to zero in an imaginary
time of order tc � 1��EA 2 ES�. A stable method will
show D asymptotically constant.

Although a system of free fermions in a periodic box
is analytically trivial, it presents an exigent test of this
method. For this system, the lowest symmetric state is
constant, and the exact fermionic wave function is a deter-
minant of plane waves. We use r � 0.5 and set

c6
G � �R� �

q
1 1 c2w

2
A� �R� 6 cwA� �R� , (12)

where wA is a Slater determinant of orbitals x
�k
�ri

; h is the
standard backflow function [13].

x
�k
�ri

� exp

∑
i �k ?

µ
�ri 1 lB

X
jfii

h�rij��rij

∂∏
. (13)

The parameter lB controls the departure of the nodal struc-
ture of this function from the exact shape. The fact that
these functions are modulated only a little from a constant
by wA means that the polarization of the population of plus
and minus walkers is small.

In Table I we report the results obtained for periodic sys-
tems of 7, 19, and 27 free fermions. The results agree with
the analytic eigenvalues within the Monte Carlo estimates
of the standard error. It has been conjectured that the com-
putational complexity of fermion Monte Carlo calculations

TABLE I. Energies and errors for a periodic system of N free
fermions. The analytic result is Eex.

N E Eex

7 2.912 85(49) 2.912 712
19 2.760(25) 2.757 454
27 2.796(30) 2.763 316
will grow as N!, where N is the number of particles in the
system. Since �27!�7!� � 2.16 3 1024, a calculation with
27 or even 19 bodies would be impossible were that con-
jecture to be true.

We have also tested this algorithm with a strongly in-
teracting system, using 14 3He atoms in a periodic box
at equilibrium density, r � 0.0216 Å23. Energies are ex-
pressed in degrees Kelvin, and lengths in Å.

With interatomic potentials that have a hard core, we
may use the same function wA as for free fermions, but we
now also need a Jastrow product. With wS � wS� �R� �Q

i,j exp�2�b�rij�5�, the guiding functions now have the
form

c6
G � �R� � wS� �R� �

q
1 1 c2w

2
A� �R� 6 cwA� �R�� . (14)

In Fig. 1 we plot the cumulative denominator as a func-
tion of imaginary time for a typical run. A stable calcula-
tion will exhibit linear growth; the fundamental stability of
the method is well demonstrated. Figure 2 shows the de-
cay of the same denominator, plotting the differential val-
ues when the method is made unstable by setting c � 0.

Table II exhibits the eigenvalues of various runs with our
method applied to the periodic system with 14 3He atoms.
They are all consistent and yield a weighted average of
22.2558�39�. The run marked (b) is a continuation of
the run labeled (a) separated by a long run with a longer
time step. As a whole, including such continuations, the
longest aggregate sequence comprises a total imaginary
time of 1830 K21. Using a total system energy difference
of 20 K (as we have measured), that corresponds to 3.6 3

104 fermion decay times. An alternative measure of the
length of the run, suggested by Ceperley [14], is the ratio

FIG. 1. Cumulative denominator of energy quotient: a stable
calculation. Imaginary time in inverse degrees Kelvin.
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FIG. 2. Denominator of energy quotient: an unstable calcu-
lation. The smooth curve is exp�220.08t�, a fit to the data.
Imaginary time in inverse degrees Kelvin.

of the rms diffusion length of a particle to the mean spacing
between particles. For this sequence of runs, that ratio is
19. Thus the observation of stable values of the sums in
Eq. (4) is significant.

Space limitations preclude a complete description of
the other checks that we have made that the results for
3He are correct: they include a fixed node calculation
of exactly the same model problem, which yielded
an eigenvalue of 22.08�1� K. A transient estimate
(cf. Fig. 3), relaxing from the fixed node, is consistent
with our result (shown as the dashed line). Analysis
of the results in Fig. 2 leads to a fermion-boson energy
difference of 1.434(35) K per particle. When combined
with the fermion result above, this agrees well with a
direct calculation of the energy of a 14-body mass-3
boson system that gave 23.68�1� K. Finally, we may
mention that the method has proved stable and cor-
rect in treating some simple atomic [15] and molecu-
lar [16] systems.

By construction, the method proposed here introduces
no approximations other than that of the short imagi-
nary-time Green’s function. In other words, if the results
are stable, then they are correct. Although we have have
not yet proved the stability of the method (i.e., that the
long-term average of the denominator of the eigenvalue

TABLE II. Energies and errors for a periodic system of 14
3He atoms.

b, Å c lB E, K

2.939 0.025 0 22.251�08�a
2.927 0.025 0 22.258�17�
2.901 0.025 0 22.257�10�
2.939 0.016 0 22.246�20�
2.939 0.010 0 22.250�19�
2.939 0.025 0 22.2559�84�b
2.939 0.025 20.05 22.249�12�
2.9395 0.025 0.05 22.268�10�
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FIG. 3. Relaxation of eigenvalue from fixed node: a transient
calculation. The dashed line shows the mean obtained by our
fermion Monte Carlo, 22.256. Imaginary time in inverse de-
grees Kelvin.

quotient is not zero), we believe that we have convinc-
ingly demonstrated the stability. Perhaps the most impor-
tant conclusion that we may draw is that the sign problem
of fermion Monte Carlo for continuous systems is not in-
tractable; the search for elegant computational methods in
this and related applications is justified.
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