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We present extensive numerical simulations of the Axelrod’s model for social influence, aimed at
understanding the formation of cultural domains. This is a nonequilibrium model with short range inter-
actions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover
a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered
(culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous de-
pending on the model parameters. At the transition, the size of cultural regions is power-law distributed.

PACS numbers: 87.23.Ge, 05.50.+q, 05.70.Ln, 84.35.+i
Recently, the study of complex systems entered social
science in order to understand how self-organization, co-
operative effects, and adaptation arise in social systems
[1]. In this context the use of simple automata or dynami-
cal models often elucidates the mechanisms at the basis of
the observed complex behaviors [1,2].

In this spirit, Axelrod has recently proposed an interest-
ing model to mimic how dissemination of culture works
[3,4]. Culture is used here to indicate the set of individual
attributes, such as “language, art, technical standards and
social norms” [1] subject to social influence, i.e., that can
be changed as an effect of mutual interactions. The au-
tomaton does not consider the effect of central institutions
or mass media and focuses on the self-organization result-
ing from a simple local dynamics representing the social
influence. This dynamics is assumed to satisfy two simple
properties: (i) individuals are more likely to interact with
others who already share many of their cultural attributes;
(ii) interaction increases the number of features that indi-
viduals share. Starting from an initial state with features
distributed randomly this leads to the formation and coars-
ening of regions of shared culture.

In this Letter, we carry out an accurate numerical analy-
sis of Axelrod’s model that unravels a remarkably rich be-
havior, not detected in previous investigations. Depending
on the initial degree of disorder, the model undergoes a
phase transition separating an ordered from a disordered
phase. The ordered phase is characterized by the growth
of a dominant cultural region spanning a large fraction of
the whole system. On the contrary, in the disordered phase
the system freezes in a highly fragmented state with a non-
trivial distribution of the sizes of cultural regions. Such a
fragmented configuration is reached in a finite time, which
diverges at the phase transition. In the whole ordered phase
instead, the coarsening process lasts for a time proportional
to the system size, before freezing into the culturally polar-
ized state. Interestingly, the nature of the transition turns
from continuous to discontinuous when the number of cul-
tural features is increased. Close to the transition, the dis-
tribution of region sizes follows a power law. Some of
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these features are captured by a mean-field approximation
that we discuss below.

Axelrod’s model is defined on a square lattice of linear
size L. On each site i there is a set of F integer variables
si,f which define the cultural “features” of the individuals
living on that site. In the original model, each feature
f � 1, . . . , F on each site i is initially drawn randomly
from a uniform distribution on the integers between 1 and
q. The parameter q is a measure of the initial cultural
variability (i.e., disorder) in the system. Here, we relax
the constraint of integer q by extracting the initial values
according to a discrete Poisson distribution of parameter q
Prob�si,f � k� � qke2q�k!, so that the positive real q is
the average of the values extracted. Though the results are
qualitatively the same, our choice is more convenient to
study the behavior of the model as q varies.

At each time step, a pair of nearest neighbor sites i and
j is randomly chosen. A feature f is chosen randomly and
if si,f fi sj,f nothing happens. If instead si,f � sj,f
then an additional feature f 0 is randomly chosen among
those taking different values across the bond, si,f 0 fi sj,f 0 .
Such a feature is then set equal: si,f 0 ! s

0
i,f 0 � sj,f 0 .

Time is measured as the total number of steps divided
by the number of sites L2. Axelrod’s model (at least in
the original formulation) can be seen as F coupled voter
models [5].

During the dynamical evolution the total diversity, mea-
sured as the number of different values of a feature f which
are present in the system, always decreases. Clearly, if all
features are equal across a bond (si,f � sj,f , ;f) or if
they are all different (si,f fi sj,f , ;f) no change can oc-
cur on the bond ij. A configuration such that, on each
bond, either all features are equal or they are all differ-
ent is an absorbing state: Dynamics will stop if such a
state is reached. There are clearly many absorbing states:
The dynamics on any finite lattice converges to one of
them. The final state can be characterized by the dis-
tribution of cultural region sizes, where a region is de-
fined as the connected set of sites sharing exactly the same
features.
© 2000 The American Physical Society
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The dynamical evolution is characterized by the com-
petition between the disorder of the initial configuration
and the ordering drive due to the local social interactions.
It is intuitively clear that when q is small the initial state
is almost completely uniform, whereas for large values of
q almost all sites have features si,f totally different from
those of their nearest neighbors. In the two cases we ex-
pect the system to converge to a uniform or a highly frag-
mented state, in which interaction or disorder dominate,
respectively. In order to understand how these two limit
situations are connected as q varies, we have simulated
the Axelrod’s model for a number of features ranging from
F � 2 to 10, sizes up to L � 150 and we have averaged
over at least 30 runs for each set of parameters. We first
discuss the dependence of the final state on the parameters
q and F and then the dynamical behavior of the model.

The frozen state.— In any finite lattice the dynamics
converges to a frozen absorbing state. The existence of
a transition in the properties of the final absorbing states is
very clear from the plot (Fig. 1) of the average size of the
largest region �smax� as a function of q for F � 10: For
q � qc � 300 we observe a sharp transition characterized
by a sudden drop of �smax��L2 which becomes steeper and
steeper for increasing sizes L. This points to the existence
of a transition between a “culturally polarized” phase for
q , qc, where one of the regions has a size of the order
of the whole system, and a “culturally fragmented” phase,
where all domains are finite. The transition is of the first
order, with the size of the largest region having a finite
discontinuity at q � qc. Note also that, for q , qc the
largest domain approaches a unitary density, i.e., it invades
the whole system. This scenario holds for all values F .

2 investigated, with qc growing with F.
The situation is different for F � 2 (inset of Fig. 1):

The fraction occupied by the largest cluster �smax��L2 van-
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FIG. 1. Behavior of smax�L2 vs q for three different system
sizes and F � 10. In the inset the same quantity is reported for
F � 2.
ishes continuously as q ! q2
c . The difference between

F � 2 and F . 2 is confirmed and clarified by the study
of the size distribution of cultural regions at the transition.
Let PL�s, q� be the probability distribution of the size s of
regions in a system of size L. The cumulated distribution
UL�s, q� �

P
`
s0�s PL�s0, q�, i.e., the fraction of regions of

size larger than s, is plotted in Fig. 2 for several F and
values of q around the transition. Figure 2 shows that
UL�s, q� decays as a power law s12t and that the expo-
nent t is universal (t � 2.6) for F . 2 but takes a dif-
ferent value for F � 2 (t � 1.6). In particular, we find
tF.2 . 2 and tF�2 , 2.

The different nature of the transition for F equal to or
greater than 2 can be related to the exponent t. Let N�q, L�
be the total number of regions in the system. Requiring the
total area to be L2 leads to

L2 � N�q, L� �s� � N�q, L�
X̀
s�1

sPL�s, q� . (1)

For q . qc there are N�q, L� � L2 domains of finite size
and the sum on s is finite as L ! `. On the other hand, for
q , qc, there are few small domains and a large one of size
smax � L2. Hence the probability distribution can be writ-
ten in the generic scaling form PL�s, q� � s2tF �s�sco� 1

A�q�ds,smax where sco is a cutoff scale, the function F �x�
is constant for x ø 1 and decays very rapidly for x ¿ 1,
and A�q� � 0 for q . qc.

The divergence L2 in the left-hand side (lhs) of Eq. (1)
is matched, for q , qc, by the component Ads,smax in
PL�s, q�, with smax � L2. The nature of the transition is
identified by the behavior of A�q� for q ! q2

c . For t , 2,
similarly to what happens in percolation theory [6], the
transition occurs through the divergence of sco and hence
of a correlation length, as q ! q1

c . This causes the di-
vergence of �s� in Eq. (1) [because sPL�s, q� � s12t with
t , 2], which matches the divergence of the lhs of Eq. (1)
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FIG. 2. Cumulated distribution UL�s, q� of region sizes for
q � qc, L � 100, and several values of F.
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as L ! `, through usual finite size scaling arguments [6].
Indeed, at q � qc the cutoff diverges with the system size
as sco � LD . On the other side of the transition a simi-
lar divergence of the cutoff sco occurs and the amplitude A
must vanish as q ! q2

c . This scenario is typical of second
order phase transitions and agrees with the value t , 2
found for F � 2 and Fig. 1.

When t . 2 the previous scenario cannot hold: For
q . qc, even if sco diverges, the sum on s in Eq. (1) re-
mains finite. Hence as q ! q1

c the number of domains
N�q, L� must remain of order L2. On the other side of the
transition, the L2 term in the lhs of Eq. (1) can be matched
only by the term smax � L2. Since no divergence arises
from the sum on small components as q ! q2

c , the am-
plitude A of the large component must remain of order
1 in this limit. We then conclude that, as q crosses qc,
the nature of the distribution changes abruptly for t . 2.
In particular, the amplitude A�q� exhibits a discontinuous
jump across the transition [7].

Dynamics.— In order to investigate the model dynamics
we study the density na of active bonds. An active bond
is a bond across which at least one feature is different and
at least one is equal, so that there can be some dynamics.
This quantity is indicative of the dynamical state of the
system, being zero in frozen configurations. In Fig. 3 we
show the behavior of na as a function of time for different
values of q and F � 10. For large values of q, after a
short initial transient, the density of active bonds decays
rapidly and the system locks into a frozen configuration
in a finite time. For small q instead, na�t� displays a
slow decay with a large majority of bonds in the active
state until it falls abruptly for long times. As the system
size is increased, the slow decay extends to longer and
longer times: The cutoff time, at which activity suddenly
dies scales as tco � L2 as shown in the inset of Fig. 3
and already noticed by Axelrod [3]. For a large range of
intermediate q values, na first decreases almost to zero but
then rises again towards a peak of activity, from which the
slow decay begins.

The dynamics is essentially a coarsening process of ho-
mogeneous regions. When the process lasts only for a
finite time, as for q . qc, it gives rise to regions of fi-
nite size. On the contrary, for q , qc the coarsening pro-
cess goes on for a time tco � L2 and produces a region
of size comparable with the whole system. The exponent
z � 2 relating tco to L is the same found in nonconserved
phase ordering [8]. However, the coarsening process is
3538
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FIG. 3. na�t� for F � 10, q � 1, 100, 200, 230, 240, 250,
270, 300, 320, 400, 500, 10 000 (top to bottom), L � 150. The
inset reports the dependence of the freezing time tco on L for
F � 10 and q � 100 , qc. The bold line has slope 2.

different from the one of a multicomponent system with
nonconserved order parameter, where the interfacial den-
sity, corresponding to the density of active bonds, decays
as t21�2. Here na�t� decays much more slowly, similar to
what occurs in the two-dimensional voter model [9], and
in a model for catalytic reactions [10].

For an infinite system (L ! `) and q , qc the system
is indefinitely in a coarsening state. Therefore we can also
define the transition as separating two different dynamical
regimes, with a fast decay of na lasting for a finite charac-
teristic time for q . qc and a slow, infinitely long decay
for q , qc. For F � 2 the behavior is qualitatively the
same: Noticeably, no evident signature of the different
nature of the transition (continuous vs discontinuous) can
be inferred from the dynamical evolution.

The dynamical behavior of the model can be studied
within a single bond mean-field treatment. Let Pm�t� be
the probability that a randomly picked bond is of type
m at time t, i.e., m features across the bond are equal
and F 2 m are different. At t � 0, since features are
assigned uncorrelated random values, we have Pm�0� �
� F

m �rm
0 �1 2 r0�F2m where r0 � Prob	si,f � sj,f 
 is the

probability that two sites have feature f with the same
value at t � 0. In the mean-field approximation, Pm sat-
isfies the master equation
dPm

dt
�

F21X
k�1

k
F

Pk

∑
dm,k11 2 dm,k 1 �g 2 1�

FX
n�0

�PnW �k�
n,m 2 PmW �k�

m,n�
∏

, (2)
where g is the lattice coordination number and W �k�
n,m is the

transition probability from an n-type bond to an m-type
bond due to the updating of a k-type neighbor bond. This
equation describes how the number of bonds of type m
is affected by the dynamics: Pk k�F is the probability to
select a bond of type k and one of the k features which
are equal across it. If k � m 2 1 a new bond of type
m is created whereas if k � m one bond of type m is
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FIG. 4. Phase diagram within the mean-field approximation
for F � 3. In the inset the mean-field behavior of na�t� for
q � 15 , qc (dotted), q � 20 � qc (full), and q � 25 . qc
(dashed). In the mean-field description the coarsening phase
lasts indefinitely because it is implicitly assumed an infinite size
system.

deleted. This explains the first two terms on the right-
hand side of Eq. (2). But the change of a feature of the
site may also affect the state of the other g 2 1 bonds
connecting such a site to its neighbors. The remaining
terms in Eq. (2) take into account this possibility. We can
compute the probabilities W �k�

n,m by analyzing in detail each
possible process. Let us consider, e.g., a type k � 1 bond
adjacent to a type n � 0 one. Without loss of generality
we can let the features on the extreme sites of the 1 bond be
�0, 0, . . . , 0� and �0, s2, . . . , sF�, with sj fi 0. The latter
site is shared also by the 0 bond whose other site has
features �s0

1, s0
2, . . . , s

0
F� with s

0
1 fi 0 and s

0
j fi sj for

j . 1. When the 1 bond becomes a type 2 bond, s2 ! 0
the neighbor 0 bond can either remain a 0 bond, if s

0
2 fi 0,

or it can become a 1 bond if s
0
2 � 0. In the spirit of

the mean-field approximation we introduce the probability
r � Prob�s0

2 � 0� which now becomes time dependent,
as we shall see. Then W

�1�
0,0 � 1 2 r and W

�1�
0,1 � r. In

much the same way we can compute the other transition
rates. For example, if F � 2, the only nonzero elements
are

W
�1�
0,0 � 1 2 r, W

�1�
0,1 � r ,

W
�1�
1,0 � 1�2, W

�1�
1,1 � �1 2 r��2, W

�1�
1,2 � r�2 ,

W
�1�
2,1 � 1 .

The system of equations (2) is closed once the dynam-
ics of r�t� is specified. The simplest such equation, in the
mean-field spirit, is r �

P
k kPk�F. This amounts to say-

ing that between any two sites there is a bond, and hence
that the probability that a feature across that bond takes the
same value can be expressed in terms of the Pm [11]. The
numerical integration of the mean-field equations yields
the phase diagram of the model as shown in Fig. 4, which
exhibits a phase transition. The order parameter na �PF21

k�1 Pk undergoes a discontinuity at q � qc, as it jumps
from a finite value for q , qc to zero for q . qc. The
mean field fairly reproduces also the dynamical evolution
of the model as can be seen from the inset of Fig. 4.

In summary, we have presented numerical simulations
of the Axelrod’s model for social influence. Social inter-
action that tends to make culture homogeneous competes
with the disorder introduced by the number of different
traits each cultural feature initially has. We find a criti-
cal value separating two phases in which one of the above
elements (interaction or disorder) respectively dominates.
The nature of the phase transition and the emergent col-
lective behavior is analyzed by common tools of statistical
physics. We find that the transition is continuous or dis-
continuous depending on the model parameters. Our study
shows that the use of concepts and methods developed in
physics may be of help in the context of social sciences.
For instance, the prevalence, for small values of q, of one
of the initially equivalent cultures can be regarded as a
spontaneous symmetry breaking due to stochastic fluctua-
tions. It would be interesting, in the future, to analyze
extensions of the simple Axelrod’s model to take into ac-
count additional ingredients like the presence of migrations
or the effect of geographical barriers.

C. C. acknowledges support from the Alexander
von Humboldt Foundation. A. V. acknowledges par-
tial support from the European Network Contract
No. ERBFMRXCT980183.

*Electronic address: castella@pil.phys.uniroma1.it
[1] R. Axelrod, The Complexity of Cooperation (Princeton

University Press, Princeton, 1997).
[2] P. W. Anderson, K. Arrow, and D. Pines, The Economy as

an Evolving Complex System (Addison-Wesley, Redwood,
1998).

[3] R. Axelrod, J. Conflict Res. 41, 203 (1997).
[4] R. Axtell, R. Axelrod, J. Epstein, and M. D. Cohen, Com-

put. Math. Organiz. Theory 1, 123 (1996).
[5] T. M. Liggett, Interacting Particle Systems (Springer, New

York, 1985).
[6] D. Stauffer, Introduction to Percolation Theory (Taylor and

Francis, London, 1985).
[7] This kind of discontinuous phase transition is somehow

similar to Bose-Einstein condensation, as discussed in
P. Bialas, Z. Burda, and D. Johnston, Nucl. Phys. B493,
505 (1997); M. Marsili and Y.-C. Zhang, Phys. Rev. Lett.
80, 2741 (1998).

[8] A. J. Bray, Adv. Phys. 43, 357 (1994).
[9] M. Scheucher and H. Spohn, J. Stat. Phys. 53, 279 (1988).

[10] L. Frachebourg and P. L. Krapivsky, Phys. Rev. E 53, 3009
(1996).

[11] Qualitatively, the results we obtained do not depend on the
equation for r, which can indeed even be considered as a
time independent constant.
3539


