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Voronoi Tessellation Reveals the Condensed Matter Character of Folded Proteins
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The packing geometry of amino acids in folded proteins is analyzed via a modified Voronofi tessellation
method which distinguishes bulk and surface. From a statistical analysis of the Voronoi cells over 40
representative proteins, it appears that the packings are in average similar to random packings of hard
spheres encountered in condensed matter physics, with a quite strong fivefold local symmetry. Moreover,
the statistics permits one to establish a classification of amino acids in terms of increasing propensity to
be buried in agreement with what is known from chemical considerations.

PACS numbers: 87.15.By, 02.70.Lq, 61.43.—]

A folded protein is a very compact and reproductible
packing of different amino-acid residues (a.a.) with lateral
chains attached to a backbone chain of peptide bonds via
a-carbon atoms [1]. The knowledge of the precise struc-
ture of a folded protein is very essential for many pur-
poses. Up to now the only efficient tools are x-rays which
requires crystallized samples and NMR. Both techniques
necessitate a large amount of materials, as well as suffi-
cient accumulation of data to resolve a structure. Quite a
lot of structures are presently known [2], at least enough
to recognize some general trends but, anyway, they repre-
sent only a small fraction of the total number of proteins.
Of course, it would be very interesting to be able to have
an idea of the structure of a folded protein given its set of
constitutive a.a. Therefore, any statistical analysis of the
peculiar positions of each a.a. in the already known pack-
ings is welcome and efforts have already been made in this
direction [3].

In this Letter we analyze the structure of folded proteins
by means of a quite common tool used in condensed matter
physics, namely, the Voronoi tessellation (VT) [4]. Given
a set of points, VT proceeds by determining for each point
the polyhedron, called “Voronoi cell,” containing the por-
tion of space closer to that point than to all others. The
cell characteristics provide essential information on the
local geometrical properties of the considered packing.
This tool is widely and currently used to study random
sphere packings, granular materials, foams, froths, and
glasses [5]. There are several examples of VT methods
applied to proteins in the literature [6,7] but only a few of
them [7] concern directly the packing of a.a. Moreover,
in [7], the authors used a Delaunay tessellation, which can
be viewed as a first step before VT, and considered the «-
carbon locations as the starting set of points. Since an «
carbon is almost systematically located on the border of the
volume occupied by its corresponding a.a., we have pre-
ferred, in this study, to consider the geometrical centers of
the lateral chain of the a.a. We think that, with this choice,
the cells are representing topologically better the true vol-
ume occupied by the a.a. [8]. Moreover, since proteins are
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finite objects with a quite large surface over volume ratio
(larger than most of the systems considered in condensed
matter physics), we have modified VT to distinguish be-
tween surface and bulk a.a. After performing a statistics
over the bulk cell characteristics of a wide set of different
globular proteins [9] it turns out that they are quite typical
of arrangements encountered in disordered condensed mat-
ter systems such as frustrated packings of spheres [10,11]
with a quite strong fivefold local symmetry. Furthermore,
when restricting the statistics to a given a.a., we find that
the average cell characteristics are typical of this a.a. For
instance, the percentage p of occurrence in the bulk of
proteins permits one to classify the a.a. according to their
burying propensity (strongly related to hydrophobicity) in
agreement with what is already known [3,12].

We have considered the known structures of 40 globu-
lar folded proteins chosen to belong to independent folds
and representative of the different classes. The number of
a.a. per protein varies from 54 (for the lenh [2] protein) to
686 (for the 1cdg [2] one). For each protein, we have de-
termined the geometrical centers of all the a.a. from which
it is made. This has been done by calculating, for each a.a.,
the barycenter of the atoms of its lateral chain [8] consid-
ering the same weight for each atom and discarding the
hydrogens. This barycenter is very close to the true center
of mass as all the atoms, except hydrogens, have almost
the same mass. Then for each protein, given the set of
centers (called points in the following) we have performed
a VT by using our own code which has proven to be very
efficient when applied to large assemblies of spheres [13]
and to glasses [14]. Moreover, this code has been modi-
fied to take care of surface effects. We have first deter-
mined the Delaunay simplicial tetrahedra (ST) [5] which
are, among all the tetrahedra formed with four points, the
ones such that no other point lies inside their circumscribed
sphere. Note that the edges of ST define unambiguously
nearest-neighboring pairs of points. For a quite compact
arrangement such as those studied here the ST located in
the bulk exhibit quite regular shapes (relatively close to
the one of a regular tetrahedron), while those close to the
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surface can be very flat and/or strongly elongated (due
to the lack of neighbors). We have decided to discard
such tetrahedra by introducing a cutoff r.: any tetrahe-
dron which has a circumscribed sphere with radius larger
than 7. is not considered. Then, given the ST, the VT cells
can be built knowing that their vertices are the centers of
ST’s circumscribed spheres. The number of edges e for a
polygonal face of a cell is the number of distinct ST shar-
ing a given edge and the number of faces f is the number
of distinct ST sharing a given vertex. Moreover, the face
area and cell volume V of a VT cell can be calculated
by picking up their constitutive elements within the corre-
sponding ST as illustrated in Fig. 1. The total cell surface
area S can be calculated by summing up the face surface
area. When building the cells it turns out that for peculiar
points, the cells are not closed (the sum of the vertex solid
angles of the ST does not fit 477): this defines the surface
points by opposition to bulk points. It should be noticed
that this definition depends on the choice for r,: if r. is too
large, only the rising points (with strong local positive cur-
vature) are considered, while if 7. is too small some inter-
nal points can be artificially considered as surface points.
In practice r. gives an idea of the smallest local radius of
curvature authorized for deeps in the external surface. We
have checked, on different examples of finite sphere pack-
ings without holes, that a reasonable choice is r. = 1.5d,,,
where d,, is the mean distance between neighboring bulk
points. In practice in our case of protein structures we have
taken r. = 10 A to be compared with the mean neighbor-
ing distance between volumic a.a. which was found to be

B

FIG. 1. A VT cell (corresponding to a Leu of the 3chy pro-
tein), whose center is called A, is depicted together with one of
the ST involving A (thick lines). Three faces of this cell are
perpendicular to AB, AC, and AD in their middle, I, J, K, re-
spectively, and meet in O, center of the sphere circumscribed
to ABCD. Elementary tetrahedra, such as OAIH (where H is
the orthogonal projection of O on the plane ABC), are used to
collect the characteristics of this VT cell. Summing up alge-
braically their volumes and the surface area (such as the dashed
one) allow one to calculate the volume of the cell and the area
of its faces.

of about 6.6 A. Anyway, we have noticed that, even with
our reasonable choice for 7., some cells close to the sur-
face remain elongated. This means that we cannot avoid
some finite-size effects due to the presence of an external
surface; in particular, some bulk cells close to the surface
have fewer faces than those located well inside the bulk.
To have an idea of the overall geometry of the packing
of a.a. in proteins, two quantities of interest are the mean
number of faces per cell { f), which is the mean coordina-
tion number between a.a. and the mean number of edges
per face (e}, which is related to the symmetry around bonds
of neighboring a.a. When averaging these quantities over
all the closed cells (corresponding to bulk points) of our
whole collection of 40 proteins, we find (e¢) = 5.14 and
(f) = 13.97, values remarkably close to compact struc-
tures often encountered in condensed matter physics [5].
A value of {e) close to 5 is characteristic of compact struc-
tures built with local rules. Such fivefold local symmetry
cannot be extended in the regular three dimensional space
due to geometrical frustration [15]. To be more precise,
we give in Fig. 2 the histograms h(e) and h( f), fraction
of faces with e edges and fraction of cells with f faces,
respectively. For comparison, we have shown the corre-
sponding histograms for the most compact random pack-
ing of equal spheres, the so-called Bernal packing [10] of
packing fraction 0.645 here built with the Jodrey-Tory al-
gorithm [16] considering 10000 spheres in a cube with
periodic boundary conditions (CPBC) [13]. We have also
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FIG. 2. Histograms h(e) (dots) and h(f) (squares) for the
numbers of edges e per face and the number of faces f per cell,
obtained from an average over all the closed cells (correspond-
ing to bulk a.a.) of the whole collection of proteins. Thin and
thick dashed lines correspond to random points and Bernal pack-
ing, respectively. Thin and thick continuous lines correspond to
the RSA packing at jamming and an average over finite clusters
made out of it, respectively (see text).
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shown the histograms obtained by considering a uniformly
random set of points (10 000 points in a CPBC). It is inter-
esting to notice that the protein histograms are intermediate
between those of a random set of points and those of the
most compact random packing of spheres. We can obtain
some reasonable fits by considering less compact sphere
packings than the Bernal one. In the figure we have shown
the histograms for the so-called random addition model
(RSA) [17] close to its jamming threshold (packing frac-
tion of about 0.38), made of 10 000 spheres in a CPBC. In
this model a packing is built sequentially with the simple
rule that the next sphere, whose center is chosen at random,
should not overlap the previous ones. The jamming limit
is obtained when no extra sphere can be added. While
h(e) fits the corresponding protein histogram quite well,
h( f) have a similar shape as the experimental one but are
horizontally shifted as if they had systematically fewer
faces in the case of proteins. This is simply due to finite-
size effects. When considering instead an average over fi-
nite clusters, made of RSA sphere centers contained in a
large sphere of 8 times longer diameter, containing about
200 points (well representative of the number of a.a. per
protein), we get excellent fits for both A(e) and A( f) as
seen in Fig. 2. Other fits could have been obtained by
considering other building rules or polydisperse sphere
packings. Anyway, all these fits should not be taken too se-
riously. They demonstrate only that the packing of a.a. in
proteins resembles, on average, the ones commonly found
in disordered systems of condensed matter physics.

To try to go further, for each a.a., we have counted
the percentage p of occurrence for which it appears in
the bulk of a protein and, when it is so, we have aver-
aged the cell characteristics, such as f, e, S, and V, over
the whole set of available proteins. In Fig. 3 we have
chosen to give (V), as well as the dimensionless surface
over volume ratio R = 0.434(S)!/2/(V)1/3 as a function
of p. Such a ratio is here defined to be equal to 1 for a
regular dodecahedron, which is the ideal cell correspond-
ing to the locally most compact arrangement of spheres
[15]. This ratio is larger for less spherical (anisotropic)
cells. The 20 a.a. have been labeled using the standard
[18] one-letter code. Here, when increasing p, they ap-
pear in the following order [19]: K = Lys, E = Glu, D =
Asp, Q = GIn, R = Arg, P = Pro, N = Asn, T = Thr,
S = Ser, H =His, G=Gly, A = Ala, Y =Tyr, M =
Met, W = Trp, V = Val, L = Leu, F = Phe, C = Cys,
I = Ile (the notation C’ will be introduced later). It is re-
markable that this order roughly corresponds to the order of
increasing hydrophobicity as already known from chemical
considerations [3,12]. Furthermore, there is definitely
a gap around 50% separating the hydrophilic a.a. (p <
50%) from the hydrophobic ones (p > 50%). Although
the curves giving (V) and R are quite scattered, some gen-
eral trends can be observed: in the hydrophilic case (V)
decreases when p increases while R stays roughly constant
(about 1.045) and in the hydrophobic case R decreases
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FIG. 3. Mean cell volume (V) (top) and dimensionless ratio

R = 0.434(S)'/2 /{V)!/3 (bottom), as a function of p, percentage
of appearance of a given a.a. in the bulk of a protein. The letter
labels of the a.a. are centered on the data. The dashed lines
are guides for the eyes. The black dot corresponds to a regular
dodecahedron.

when p increases while (V') stays roughly constant (about
170 A3). This means that the reasons to be more buried are
different in the two cases: smaller size in the hydrophilic
case and better spherical shape in the hydrophobic case.
It is also worth noticing that a linear fit of R through the
hydrophobic data extrapolates nicely to one as p tends to
100%. This means that the more hydrophobic the a.a., the
more they try to pack as in an ideal icosahedral structure
with dodecahedral cells. One can even go further, e.g.,
among the largest p values is a subgroup of four a.a., I,
F, L, V, which are known to be highly hydrophobic and
to be the main constituents of regular secondary structures
[3,20,21]. The C’s are quite peculiar as they can be linked
together through a covalent disulfide bridges [18]. Two
states can be distinguished, free cysteine and a covalently
linked one (i.e., half-cystine), named C and C’, respec-
tively, in Fig. 3. Note that C’ is, as expected, clearly apart
from the other a.a., while C joins the top buried a.a., co-
herently with previous observations [22]. Moreover, the
covalently linked cysteine data align quite well with those
of hydrophilic a.a., as if the high value of p is due only to
an artificially smaller size (due to bonding).

Although the above analysis is enlightening, it remains
that it is based on small variations of the cell character-
istics over the different a.a. As seen in Fig. 3 the data
for (V) vary by about 10% around the mean. The same
conclusion is reached when looking at other quantities not
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reported here. The mean distances between neighboring
a.a. (which are the edge lengths of ST) stay in the range
6.8 to 7.5 A, varying roughly like (V)'/3. Moveover,
when performing partial histograms /(e) and h( f) over
hydrophobic and hydrophilic a.a., separately, they look re-
markably identical to those reported in Fig. 2 [apart from a
trivial shift of () due to the fact that hydrophilic a.a. are
more likely located near the external surface]. All this jus-
tifies a posteriori the comparison with simple models, like
hard sphere packings, based on geometrical rules indepen-
dent on the chemical details, and suggest that essential in-
gredients to understanding protein folding are compaction
and hard core repulsions. Some efforts have recently been
made in this direction [23]. Of course, the chemical de-
tails are very important as they govern both the biological
properties of each protein and the final differences between
their folded structures.

In conclusion, using a very simple geometrical tool
such as VT, we have shown that the packings of a.a. in
folded proteins resemble those found in condensed mat-
ter physics. Moreover, by determining their probability
to be in the bulk, we have established an ordering of the
a.a. which constitutes a new scale to estimate burying from
sequence data alone and likely opens new ways to investi-
gate and predict protein features. This calculation is a first
step and we intend to go further by enlarging the statistics
and by analyzing the correlations between a.a., directly in
the packing or along the peptide chain. We hope the tools
of condensed matter physics will more often be used to
study proteins as we think they provide a novel and pow-
erful approach to this promising field of research.
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