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Soap Froths and Crystal Structures
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We propose a physical mechanism to explain the crystal symmetries found in macromolecular and
supramolecular micellar materials. We argue that the packing entropy of the hard micellar cores is
frustrated by the entropic interaction of their brushlike coronas. The latter interaction is treated as a
surface effect between neighboring Voronoi cells. The observed crystal structures correspond to the
Kelvin and Weaire-Phelan minimal foams. We show that these structures are stable for reasonable areal
entropy densities.

PACS numbers: 83.70.Hq, 61.50.Ah, 82.70.–y
Dendritic polymers [1–3], hyperbranched star polymers
[4,5], and diblock copolymers [6,7] represent a new class
of molecular assemblies all of which form a variety of
crystalline lattices, many of which are not close packed.
These assemblies are all characterized by compact cores
and brushlike, soft coronas. These systems might be mod-
eled by treating the micelles as sterically interacting hard
spheres and it would follow that their crystalline phases
should be stackings of hexagonal-close-packed (hcp) lay-
ers. Recently [8] it has been shown that the face-centered-
cubic (fcc) lattice maximizes the total entropy and so
hard-sphere crystals should form fcc structures. Note that
the entropic difference between the various hcp lattices
is a global issue: the local arrangement of spheres is the
same for all close-packed variants and thus the lattice
cannot be predicted from nearest-neighbor interactions.
In order to understand the richness of crystal symmetries
in the micellar systems, we propose an additional global
consideration: we add an interaction proportional to the
interfacial surface area between the cages which contain
each micelle (Voronoi cells). Though approaches based
on self-consistent field theory and two-body interactions
can yield non-close-packed lattices [9,10], we propose
a universal explanation for a host of new structures and
present a new paradigm for the rational design and control
of macromolecular assemblies [11].

The interfacial interaction arises through the entropy of
the brushlike coronas of the micelles. Because of con-
straints on their conformations, the brushes suffer an en-
tropic penalty proportional to the interfacial area between
the Voronoi cells surrounding each sphere. Thus they favor
area-minimizing structures, precisely the type of structures
that dry foams might make. Over a century ago, Lord
Kelvin proposed that a body-centered-cubic (bcc) foam
structure had the smallest surface-to-volume ratio [12], but
in 1994 Weaire and Phelan found that a structure based
on the A15 lattice [13] was more efficient. We note that
neither the bcc nor A15 structures are close packed and
thus there is a fundamental frustration between the hard-
core volume interaction and the surface interaction due to
overlapping soft coronas.
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For concreteness, in this paper we focus on structures
observed in a family of dendrimer compounds consisting
of a compact poly(benzyl ether) core segment and a dif-
fuse dodecyl corona [1,2]. These conical dendrimers self-
assemble in spherical micelles which subsequently arrange
into the A15 lattice (Fig. 1). The interaction between the
micelles is primarily steric, i.e., repulsive and short range.
The micellar architecture suggests that the potential is char-
acterized by three regimes. At large distances, the micelles
do not overlap and the interaction vanishes. As the coro-
nas begin to overlap, the entropy of the brushlike coronas
decreases, which gives rise to a soft repulsion between the
micelles. Finally, at small separations the coronas begin to
penetrate the compact cores: this is very unfavorable and
gives rise to hard-core repulsion. This energy landscape
is in qualitative agreement with recent, detailed molecular
dynamics simulations [14].

Although both originate in steric interaction, the two re-
pulsive regimes are characterized by very different func-
tional behaviors. The hard part of the potential results in a

FIG. 1. Various lattices: (a) Face-centered cubic, (b) body-
centered cubic, (c) A15 lattice, and (d) columnar representation
of A15 lattice. In the A15 lattice, columnar and interstitial sites
are drawn in grey and black, respectively.
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restricted positional entropy of the micelles which depends
on the free volume, the difference between the actual and
the hard-core volumes. The soft part comes from the de-
creased orientational entropy of the chains within the over-
lapping coronas. The matrix of overlapping coronas can be
thought of as a compressed bilayer and thus the free vol-
ume may be written as a product of the interfacial area A
and the average spacing between the hard cores d so that
at any given density

Ad � const . (1)

Though this approximation ignores the curvature of brush-
like coronas, the dendrimers are relatively close and we
expect this constraint to hold in this system. Since the re-
pulsion decreases monotonically with distance, the system
will favor a maximum thickness d and will thus tend to
minimize the interfacial area, hence our proposed interfa-
cial interaction, which is incompatible with the bulk free
energy minimized by a close-packed arrangement of mi-
celles. In the following, we compare the free energies of
fcc, bcc, and A15 lattices and estimate the strength of the
interfacial interaction such that the structure of the micel-
lar crystal is dictated by the minimal-area principle.

The calculation of the bulk free energies of condensed
systems is fairly complicated even for hard-sphere systems
and the best theoretical results are obtained numerically. It
is interesting to note that elaborate analytic models, such as
the high-density analog of the virial expansion [15] and the
weighted-density-functional approximation [16], are only
slightly better than the simple cellular free-volume theory
[16,17]. The free-volume theory is a high-density approxi-
mation where each micelle is contained in a cell formed by
its neighbors, and the communal entropy associated with
the correlated motion of micelles is neglected.

Within this theory, the positional entropy of a micelle is
determined by the configurational space of its Voronoi or
Wigner-Seitz cell. In the fcc lattice, the centers of mass of
the micelles are within rhombic dodecahedra [18], while in
the bcc lattice they are contained in regular octahedra al-
though the bcc Voronoi cell is an orthic tetrakaidecahedron
[18]. For these lattices, the bulk free energy of a micelle
is given by

FX

bulk � 2kBT ln

∑
aX

µ
bX

n1�3 2 1

∂3∏
, (2)

where X is either fcc or bcc, n � rR3 is the reduced
number density, and R is the hard-core radius of micelles.
The coefficients afcc � 25�2 and abcc � 2231�2 depend on
the shape of the cells, whereas bfcc � 225�6 and bbcc �
225�331�2 are determined by their size.

The A15 lattice is somewhat more complicated: as
shown in Fig. 1d the A15 unit cell includes six colum-
nar sites, which make up three perpendicular interlock-
ing columns, and two interstitial sites. A pseudo-Voronoi
construction (subject to the constraint that all cells have
equal volume) for this lattice leads to a partition consisting
of irregular pentagonal dodecahedra and tetrakaidecahedra
with two hexagonal and twelve pentagonal faces [19]. Be-
cause of the irregularity of the cells, we calculate the bulk
entropic free energy numerically, and the result is shown
in Fig. 2. For our purposes we require an analytic form:
by substituting the dodecahedra and tetrakaiecahedra by
spheres and cylinders, respectively, and allowing for two
adjustable parameters C and S, which measure the devia-
tion of the Voronoi cells from these spheres and cylinders,
we find
FA15
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This form is within 0.1% of the numerical result with S �
1.64 and C � 1.38.

The interfacial free energy is minimized by the divi-
sion of space with smallest area. The problem of find-
ing the partition of space into equal-volume cells with the

FIG. 2. Bulk free energies of fcc, bcc, and A15 lattice at re-
duced densities above the melting point. Solid lines: analytical
results, Eqs. (2) and (3); circles: numerical results.
minimum interfacial area was first studied by Kelvin [20]:
he proposed a bcc lattice of orthic tetrakaidecahedra with
slightly curved hexagonal faces to satisfy the Plateau rules
[12]. However, the Weaire-Phelan partition, which dif-
fers from the equal-volume Voronoi construction for the
A15 lattice only in a delicate curvature of the pentagonal
faces, is 0.3% more efficient [13]. We note that the bcc and
A15 structures are among the simplest tetragonal close-
packed lattices [21], suggesting that other, more complex
close-packed, lattices might be more efficient still. How-
ever, the A15 structure appears to be the most efficient,
although no proof of its supremacy exists.

To argue that the A15 and bcc lattices are the equilib-
rium structures formed by micelles, we must estimate the
entropy penalty per unit area and translate this into an en-
tropy per dodecyl chain. The dodecyl bilayer is modeled as
a polymer brush consisting of chain molecules attached to
hard cores, and in the limit of high interdigitation its free
energy consists solely of the excluded-volume repulsion
3529
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of the chains:

Fsurf �
2�NkBT

d
, (4)

where d is the layer thickness, � is a parameter with the
dimension of length, and N is the number of chains per
micelle [22]. Since the bilayer must fill the free volume,
AMd � 2�n21 2 4p�3�R3, where AM is the interfacial
area per micelle. Thus the interfacial free energy of a
micelle is

FX

surf �
�NkBT

R
gXn22�3

n21 2 4p�3
, (5)

where AM � gXV
2�3
M is the surface area of a cell of volume

VM . For the lattices we consider, gfcc � 25�63 � 5.345,
gbcc � 5.306, and gA15 � 5.288 [23].

We now calculate the range of � such that the total free
energy

FX � FX

bulk 1 FX

surf (6)

is minimized by the bcc and A15 lattices rather than by
the naive, close-packed, fcc lattice. In order to estimate the
strength of the soft repulsion, we must first determine
the actual reduced density n. Since the hard-core radius
of the micelles is unknown, we limit n by recognizing
that it must be larger than the melting density, n � 0.120
for hard spheres [16], and that it must be smaller than
the close-packing density of the A15 lattice, n � 0.125.
The most conservative lower bound of � corresponds
to the lowest possible density, i.e., the melting density.
With N � 162 chains per micelle [1], we find that at
n � 0.120 the fcc to bcc transition occurs for � � 0.1R
and the bcc to A15 transition occurs for � � 0.3R. This
corresponds to an entropy per chain of 0.5kB and 1.5kB,
respectively. Both values are of the correct order of
magnitude and the higher value of the latter is consistent
with the relative rarity of the A15 phase.

Since we expect that each chain has at least kB of en-
tropy, we conclude that the energetics of the dendrimer
micelles is dominated by interfacial effects. This is hardly
surprising. The number of degrees of freedom of each mi-
celle is quite large and the bulk free energy depends only
on the position of the micelle as a whole. Since the mi-
celles are soft, the internal degrees of freedom such as the
chain conformations play an important role.

This paradigm, which shows that the minimal surface
problem can be fruitfully transplanted to the microscopic
level, explains the morphology of a number of dense micel-
lar systems. The same ideas can be applied to polymeric
micelles made of, e.g., polystyrene-polyisoprene diblock
copolymers dispersed in decane [6,7]. In this case, the
micelles are characterized by highly concentrated poly-
styrene cores and diffuse polyisoprene coronas, and they
form bcc or fcc lattices, depending on the relative length
of the polystyrene and polyisoprene chains. The bcc lattice
is observed in diblock copolymers with similar lengths of
3530
core and coronal segments, whereas the fcc lattice occurs
whenever the corona is thin compared to core. This is con-
sistent with our model of the impenetrable core which is
responsible for the hard part of the repulsion and which fa-
vors arrangements with large free volume. In addition, our
model suggests that the A15 lattice is the ground state of an
asymmetric diblock with an exceptionally large corona or,
equivalently, a corona made of very floppy, “entropy-rich”
chains. We note that distinguishing between A15 and bcc
in powder-averaged diffraction is delicate: the first three
bcc reflections [24] are at

p
2,

p
4, and

p
6, while the first

four A15 reflections are at
p

2,
p

4,
p

5, and
p

6, and thus
a careful study would be necessary.

The existence of the A15 lattice in the dendrimer aggre-
gate also may be regarded as an experimental verification
of the recent theoretical developments in minimal surfaces
and, in particular, Weaire and Phelan’s conjecture that this
structure solves the Kelvin problem. At this juncture, the
presumably ideal A15 structure has not been observed un-
ambiguously on a macroscopic scale in a soap froth [25].
Last but not least, let us note that similar structures have
been found in lyotropic materials, e.g., in lipid bilayers in
water [26]. In such systems the intermicellar potential also
results in an effective interfacial free energy although it is
not steric but substance specific and thus transcends the
scope of this discussion.

Our model may be further refined by including the ef-
fects of the curvature of the brushlike coats, the strain of
the coronas into the interstitial regions, and solvent effects.
In addition, the dual problem of determining the structure
of foams might be amenable to our analysis through the
introduction of excluded volume interactions between the
bubbles [27].

We hope that this study elucidates the relation between
interaction and structure in supramolecular assemblies. By
including an additional global contribution to the free en-
ergy we provide a rough yet universal quantitative guide-
line for the design of self-organized soft materials, which
can be used for a number of applications such as photonic
band-gap materials [28], Bragg switches [29], and porous
microreactors [30]. By tuning the ranges of hard and soft
repulsion, one should be able to choose among the spec-
trum of symmetries from the lattice with minimal interfa-
cial area to the lattice with maximal packing fraction and
engineer the crystal structure most fitted for a particular
application.

It is a pleasure to acknowledge stimulating conversa-
tions with T. C. Lubensky and V. Percec. This work was
supported in part by NSF Career Grant No. DMR97-
32963. R. D. K. was also supported by the Alfred P. Sloan
Foundation.

*On leave from J. Stefan Institute, Slovenia.
[1] V. S. K. Balagurusamy, G. Ungar, V. Percec, and G. Johans-

son, J. Am. Chem. Soc. 119, 1539 (1997).
[2] V. Percec et al., Nature (London) 391, 161 (1998).



VOLUME 85, NUMBER 16 P H Y S I C A L R E V I E W L E T T E R S 16 OCTOBER 2000
[3] S. D. Hudson, H.-T. Jung, P. Kewsuwan, V. Percec, and
W.-D. Cho, Liq. Cryst. 26, 1493 (1999).

[4] T. Dotera, Phys. Rev. Lett. 82, 105 (1999).
[5] M. Watzlawek, C. N. Likos, and H. Löwen, Phys. Rev. Lett.

82, 5289 (1999).
[6] G. A. McConnell, A. P. Gast, J. S. Huang, and S. D. Smith,

Phys. Rev. Lett. 71, 2102 (1993).
[7] G. A. McConnell and A. P. Gast, Phys. Rev. E 54, 5447

(1996).
[8] S.-C. Mau and D. A. Huse, Phys. Rev. E 59, 4396 (1999).
[9] M. W. Matsen and F. S. Bates, J. Chem. Phys. 106, 2436

(1997).
[10] E. Velasco et al., Phys. Rev. Lett. 85, 122 (2000).
[11] M. Muthukumar, C. K. Ober, and E. L. Thomas, Science

277, 1225 (1997).
[12] W. Thomson, Philos. Mag. 24, 503 (1887).
[13] D. Weaire and R. Phelan, Philos. Mag. Lett. 69, 107 (1994).
[14] T. Cagin, G. Wang, R. Martin, and W. A. Goddard (to be

published).
[15] W. G. Rudd, Z. W. Salsburg, A. P. Yu, and F. H. Stillinger,

Jr., J. Chem. Phys. 49, 4857 (1968).
[16] W. A. Curtin and K. Runge, Phys. Rev. A 35, 4755 (1987).
[17] J. A. Barker, Lattice Theory of the Liquid State (Pergamon,

Oxford, 1963), pp. 29–33.
[18] C. Kittel, Introduction to Solid State Physics (Wiley,
New York, 1953), pp. 59–61.

[19] J. Charvolin and J. F. Sadoc, J. Phys. (Paris) 49, 521
(1988).

[20] The Kelvin Problem: Foam Structures of Minimal Surface
Area, edited by D. Weaire (Taylor & Francis, London,
1997).

[21] N. Rivier, Philos. Mag. Lett. 69, 297 (1994).
[22] S. T. Milner, T. A. Witten, and M. E. Cates, Europhys. Lett.

5, 413 (1988).
[23] gbcc and gA15 were computed using Surface Evolver, a

software package developed by K. Brakke.
[24] International Tables for Crystallography, edited by

T. Hahn (D. Reidel Publishing Company, Dordrecht, The
Netherlands, 1983).

[25] D. Weaire and R. Phelan, Philos. Mag. Lett. 70, 345 (1994).
[26] P. Mariani, L. Q. Amaral, L. Saturni, and H. Delacroix,

J. Phys. II (France) 4, 1393 (1994).
[27] D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995).
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