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We combine dynamical decoupling and universal control methods for open quantum systems with
coding procedures. By exploiting a general algebraic approach, we show how appropriate encodings of
quantum states result in obtaining universal control over dynamically generated noise-protected subsys-
tems with limited control resources. In particular, we provide a constructive scheme based on two-body
Hamiltonians for performing universal quantum computation over large noiseless spaces which can be
engineered in the presence of arbitrary linear quantum noise.
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Encoding of quantum information plays a vital role in
strategies aimed at counteracting the effects of noise due
to unwanted interactions between a quantum information
processor and its environment. A chief example is quan-
tum error correction [1], where the restriction of the initial
state of the system to carefully selected subspaces of the
overall state space (codes) is crucial to ensure that errors
can be actively diagnosed and reversed. The identifica-
tion of appropriate coded states is also the starting point
of passive quantum error-avoiding approaches [2], which
rely on the occurrence of specific symmetries in the sys-
tem-environment interaction to obtain regions of the state
space intrinsically inaccessible to noise.

An alternative solution to the issue of reliable quantum
information processing in the presence of noise has been
developed recently in the form of quantum error suppres-
sion techniques [3]. The latter stem from general control
methods for open quantum systems [quantum bang-bang
(b.b.) controls [4] ], which operate by inducing suitable
time scale separations between the controller and the natu-
ral dynamics of the system. Decoupling from noise is
achieved by continuously undoing system-environment
correlations on time scales that are short compared to the
typical memory time of the environment. In contrast to the
above methods, no redundant encoding is necessary for
preserving and manipulating quantum information pro-
vided that the required control operations can be imple-
mented. Such control requirements may turn out very
stringent in realistic situations [5]. This raises the question
of whether limited control resources, which may hinder
the implementation of noise-decoupled universal quantum
computation over the full system’s state space, can still
suffice to perform the same task over states encoded into
smaller, noise-protected subsystems.

In this Letter, we investigate the usefulness of quantum
coding within the decoupling framework, by examining the
symmetry structure enforced on the effective dynamics by
the controller. We establish a complete classification of the
options available for encoding quantum information safely
and for implementing universal control in a way which
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preserves the effect of decoupling as well as the selected
coding space. The use of appropriate encodings translates
into reducing the relevant control resources by allowing
for either smaller or more accessible repertoires of control
Hamiltonians, or for larger amounts of imperfections in the
controller’s operations. In particular, the need for expen-
sive bang-bang operations is confined to maintaining noise
suppression, additional manipulations on encoded subsys-
tems becoming fully implementable via less demanding
weak-strength controls.

Our analysis has several implications. First, it provides
a comprehensive formalism for error suppression schemes,
which incorporates previous results as a special case. Sec-
ond, it further elucidates the significance of the notion of
a noiseless subsystem, that has been identified as the most
general route to noise-free information storage in [6] and
has been argued to provide a unifying algebraic structure
for noise control strategies by Zanardi [7]. Our work points
out how, at variance with the case where noiseless subsys-
tems emerge by virtue of preexisting static symmetries,
additional conditions should be met to implement con-
trol over engineered noise-protected structures, thereby
usefully complementing the existential results of [7].
Furthermore, the combination with coding procedures
substantially expands the range of possibilities for using
active decoupling methods. For a broad class of quantum
information processors experiencing linear non-Markovian
quantum noise, we outline a scheme where noise decou-
pling involves a minimal set of two bang-bang operations
and, at the price of only slightly increasing the required
memory resources, universal quantum logic on encoded
qubits can be implemented entirely through slow tuning
of two-body bilinear interactions.

Let S be a finite-dimensional open quantum system,
specified as a subsystem with self-Hamiltonian HS of a bi-
partite quantum system on HS ≠ HB, B denoting the en-
vironment. Noise is introduced in the evolution of S via a
set of traceless error operators Ea in the interaction Hamil-
tonian, HSB �

P
a Ea ≠ Ba , the Ba’s being environment

operators. Let E denote the linear space generated by the
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Ea’s in the algebra B�HS� of operators on HS . Note that
S and B are associated with mutually commuting operator
algebras, generated by operators of the form �OS ≠ 'B�
and �'S ≠ OB�, respectively, expressing the fact that S and
B represent physically different degrees of freedom. For
n-qubit systems, HS � �d , B�HS� � Mat�d 3 d, ��,
with d � dim�HS� � 2n.

Decoupling via bang-bang control is achieved by
subjecting the system to repetitive manipulations which
alternate periods of free evolution under the natural
Hamiltonian with full strength�fast switching control
actions able to instantaneously rotate the natural propa-
gator U via U � gyUg [3,4]. The effective dynamics
takes a simple form if the unitary operators g are chosen
according to a finite-order group G (decoupling group),
jGj � order�G � . 1. We identify the abstract group G
with its image under a unitary representation m in terms
of d 3 d matrices. Let Tc be the time scale associated
with the periodicity of the controller. In the ideal limit
of arbitrarily short Tc, the dynamics of the system is
modified through a quantum operation of the form [3,4,8]

PG �X� �
1
jGj

X

g[G

gyXg, X [ B�HS� . (1)

The above group-theoretical averaging has a transparent
physical interpretation. Because PG �X� commutes with
every group element g, the action of the controller over
times longer than the averaging period Tc only preserves
the set of operators which are invariant under G , thereby
enforcing a G symmetrization of the evolution of S.

In order to identify suitable coding structures in HS , we
follow an approach borrowed from quantum statistical me-
chanics [6,9], where abstract subsystems are associated to
operator algebras with definite symmetry properties. Let
�G0 denote the set of operators commuting with G (com-
mutant). �G0 is a subalgebra of B�HS�. A second al-
gebraic structure associated with G is the group algebra
�G , which is the (at most) jGj-dimensional vector space
spanned by complex combinations of elements in G . �G
and �G0 are linked together by the key property of re-
ducibility [9]. G acts irreducibly on HS if (and only if)
�G0 � �' � �l'�, l [ �. A similar definition applies
to �G0. Since the set of operators commuting with �G0 is
identical to �G , the commutant is automatically reducible.
Whether or not the decoupling group itself is reducible
on HS translates into the presence of nontrivial symme-
tries which can be exploited to constrain the dynamics to
smaller portions of the state space.

By standard group-representation theory [9], the reduc-
tion of G (and �G) takes place according to the direct-
sum decomposition of m into irreducible representations
(irreps) of G , m � ©JnJmJ , the number of inequivalent
irreps being at most jGj. The Jth irrep, with dimension
dJ , appears with multiplicity nJ , in such a way thatP

J nJdJ � d. By an appropriate change of basis, HS

can be made isomorphic to a direct sum over invariant
spaces HJ of states transforming according to mJ , HS �
©JHJ . Let �jJ; l, m�jl � 1, . . . , nJ ; m � 1, . . . , dJ� de-
note an orthonormal basis of HJ . Because HJ is made of
nJ (identical) copies of a dJ-dimensional irrep space DJ ,
we can further identify jl, m� � jl� ≠ jm� and write HS as

HS � ©JHJ � ©JCJ ≠ DJ , (2)

with CJ � �nJ and DJ � �dJ . By construction, opera-
tors in �G act trivially on the coordinate l specifying the
irrep copy, dl,l0 , while operators in �G0 act trivially on
the coordinate m by only mixing copies of the same irrep,
dm,m0. Thus, HJ factorizes into the tensor product of two
factors CJ and DJ , carrying irreps of �G0 and �G , re-
spectively [10]. The action of �G and �G0 over HS can
then be represented in the following simple form:

�G � ©J'nJ ≠ Mat�dJ 3 dJ , �� , (3)

�G0 � ©J Mat�nJ 3 nJ , �� ≠ 'dJ . (4)

The above construction implies that we can regard each
factor CJ , DJ in (2) as the state space of a subsystem
belonging to an effective bipartite system defined on HJ .
In analogy with a true bipartite system, CJ has an alge-
bra of observables of the form �OCJ ≠ 'DJ �, OCJ [
Mat�nJ 3 nJ , ��, whereas DJ has an algebra of observ-
ables of the form �' ≠ ODJ �CJ , ODJ [ Mat�dJ 3 dJ , ��.
Equations (3) and (4) are special instances of general
results on operator algebras closed under Hermitian trans-
pose [9]. In particular, the identification of noiseless sub-
systems supported by static symmetries can be obtained by
applying a decomposition similar to (3) to the interaction
algebra A generated by 'S , HS , and the Ea’s [6,7]. In
our setting, we are left with the freedom of exploiting any
of the subsystems in (2) for encoding information. Under
what conditions are such subsystems noiseless?

Let us first consider encoding in the left factors CJ (com-
mutant coordinates), assuming that nJ . 1. Formally, in
the case of one-dimensional irreps (dJ � 1 for some J),
this kind of encoding encompasses standard noiseless sub-
spaces, where passive protection against noise is obtained
by choosing CJ as the singlet sector of the interaction
algebra A [2,11]. In our case, noiselessness of the com-
mutant degrees of freedom is guaranteed by ensuring a
trivial action of the effective error generators PG �Ea� over
each CJ . By observing that operators belonging to the
so-called center Z � �G0 > �G are diagonal over each
HJ [9], Z � ©JlJ'nJ ≠ 'dJ , lJ [ �, a necessary and
sufficient condition is PG �Ea� [ �G0 > �G for every
a. Note that this is generally a weaker requirement than
the correctability condition PG �Ea� � 0 demanded in de-
coupling schemes without encoding [3,4]: for instance,
�G0 > �G � �G for Abelian decouplers.

As a second coding method, we can choose the right fac-
tors DJ (group coordinates), provided that dJ . 1. In par-
ticular, such an option includes the limiting situation where
G acts irreducibly on HS , in which case the decomposi-
tion (3) collapses to a single term �G � Mat�d 3 d, ��
and the whole space becomes a single noiseless system
[7]. This corresponds to a maximal decoupling scheme,
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whereby PG �X� � l' for every X [ B�HS� [4]. In
the more general case where G is reducible, symmetrized
noise generators PG �Ea� [ �G0 act trivially on factors
carrying a �G-irrep. Thus, subsystems of the form DJ are
automatically noiseless regardless of whether noise sup-
pression over the whole state space is achieved or not.
Although the effective dynamics over HS is no longer
unitary under these conditions, corruption of information
encoded in DJ is fully prevented thanks to symmetry.

In addition to enabling protection against the environ-
ment, encoding may also offer improved stability against
faults in the implementation of b.b. control. While imper-
fections of operations in G directly affect the group com-
ponent, states that carry commutant coordinates are still
unaffected as long as �G0 is preserved. Thus, encoding in
subsystems of the form CJ is robust against imperfections
of the b.b. rotations which stay in �G . This effect, which
is corroborated by experience from multipulse techniques
in nuclear magnetic resonance [12], will be analyzed in
greater detail elsewhere.

The first step to specifying a control scheme for noise-
less subsystems is to make sure that control operations are
never allowed to draw states out of the selected coding
space. This determines the symmetry of the Hamiltoni-
ans to be applied for control, H [ �G0 for action on CJ

subsystems, or H [ �G for action on DJ subsystems.
Let U�CJ � and U�DJ� denote the subgroups of unitary
transformations over CJ and DJ , respectively. Universal-
ity results can be established by observing that, by (3) and
(4), �G0jCJ � Mat�nJ 3 nJ , �� and, similarly, �GjDJ �
Mat�dJ 3 dJ , ��, i.e., the elements of �G0 (�G ) restricted
to the coding space span the whole operator algebra of
the associated subsystem. Thus, by standard universality
results [13], almost any pair of Hamiltonians Hi [ �G0

or Hi [ �G , i � 1, 2, is universal over CJ or DJ , re-
spectively. Similar results, which rely purely on symmetry
arguments and therefore apply to noiseless subsystems ir-
respective of their static or dynamic origin, have been for-
mally derived also in [7,11].

However, control of dynamically generated subsystems
is subject to additional constraints due to the presence of
the controller. Accordingly, it is crucial to specify how to
apply the relevant Hamiltonians in order to achieve the
desired effect. Since the averaging operation in (1) is in-
trinsically associated with a minimum time scale Tc [3,4],
control operations should be enacted according to differ-
ent criteria depending on whether the intended action is on
the group or the commutant coordinates. By construction,
the application of Hamiltonians in �G0 does not interfere
with the controller. Thus, encoding in CJ has the virtue
that control operations can be effected via the weak
strength�slow switching scheme introduced in [3]. Elimi-
nating the need for fast programming operations can be
essential in situations where accurate frequency selection
is demanded at the same time. Whenever encoding in DJ

is chosen, slow application of arbitrary Hamiltonians pro-
duces a trivial action. Thus, the least demanding option
3522
for applying a Hamiltonian H [ �G relies on the ability
to fast-modulate H according to the weak strength�fast
switching scheme outlined in [3].

If �G is irreducible, the possibility to attain complete
control over the whole HS [3] is found as a special case
of the above results. When G is reducible, reachability of
arbitrary states in HS necessarily occurs through control
operations that steer the dynamics through different irreps
of �G . The criteria for universality without encoding [3]
can then be regarded in terms of a symmetry mixing which
arises from either combining commutant coordinates asso-
ciated with different control groups G or from exploiting
the action on both group and commutant coordinates from
a single G . Complete controllability of noiseless subsys-
tems does not by itself imply the potential of efficiently
implementing a quantum network. This depends on the
available Hamiltonians as well as on the architecture by
which subsystems are configured to encode and process
information. We focus on quantum computation (QC).

Let S be a quantum computer with n qubits, HS �
��2�≠n, and let us assume that the interaction Hamilto-
nian HSB is linear, meaning that the error generators Ea

are combinations of single-qubit Pauli operators s
�i�
a , a �

x, y, z, i � 1, . . . , n. Notably, the two extreme situations
of independent and collective decoherence are recovered
by identifying �Ea� � �s�i�

a �, dim�E � � 3n, and �Ea� �
�
P

i s
�i�
a �, dim�E � � 3, respectively.

Example 1: The collective spin-flips decoupling
group.—Suppose that n is even and define Xj � s

� j�
x ,

Zj � s� j�
z , Yj � ZjXj � is

� j�
y . The group of collective

p rotations is the set G � �',≠n
i�1Xi ,≠

n
i�1Yi ,

≠
n
i�1Zi�. G is an Abelian group with order jGj � 4,

generated by ≠iXi , ≠iZi and formally identical to the
stabilizer of distance-two �n, n 2 2, 2	 error-correcting
codes [14]. Since PG �s�i�

a � � 0 for every a, i, de-
coupling according to G is effective at suppressing any
linear interaction. A decoupling cycle is specified by a se-
quence of the form �d 2 Px 2 d 2 Pz	2, with d � Tc�4
a time delay and Pa a b.b. collective p pulse along the â
axis [3]. Being Abelian, G has jGj � 4 one-dimensional
irreps and HS decomposes as the direct sum of 4 joint
eigenspaces HJ , J representing a collective label for the
generators’ eigenvalues, J � �61, 61�. Encoding into
commutant factors CJ is the only nontrivial option. Since
dim�HJ� � nJ � 2n22, each of the four (equivalent)
subspaces is able to encode n 2 2 logical qubits. For
instance, the G-invariant subspace J � �1, 1� is spanned
by the n-qubit cat states �jx� 1 jNOTx���

p
2, x denoting

an even-weight binary string of length n.
In order to obtain an explicit scheme for performing

universal QC on encoded qubits, the key step is to look at
the available operations in �G0. As a group, �G0 has
2n 2 2 generators, two of which are also generators for G .
The 2�n 2 2� generators of �G0 2 G can be chosen
among interactions of the form XiXj , ZiZj , i, j � 1, . . . , n.
These correspond to nontrivial encoded operations. For
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instance, for the J � �1, 1� G-invariant code spanned
by the above vectors, the products Xj � X1Xj11,
Zj � Zj11Zn, j � 1, . . . , n 2 2, act as encoded s� j�

x
and s� j�

z observables, respectively. Using a Euler-angle
construction, one can generate any single-qubit opera-
tion on each encoded qubit. A universal set of gates is
obtained by noting that �G0 contains the Heisenberg
interactions h�i, j� � �si ? �sj � XiXj 2 YiYj 1 ZiZj

enabling one to implement swapping between any pair of
encoded qubits, i.e., h�i, j� � h�i 1 1, j 1 1�. Since the
square-root-of-swap gate together with one-qubit gates
are a universal set [15], one can noise-tolerantly perform
universal QC on n 2 2 encoded qubits by slowly turning
on and off two-body interactions in parallel with the
controller.

Example 2: The symmetric decoupling group.— Let
G � Sn be the natural representation of the permutation
group on HS , m�P � �≠n

i�1jci�� � ≠
n
i�1jcP �i��, P [ Sn.

Starting from arbitrary linear interactions, decoupling ac-
cording to Sn projects over the permutation-invariant com-
ponent, leaving collective operators of the form

P
i s

�i�
a [

�S 0
n as effective error generators. Thus, the controlled

dynamics simulates the collective noise model [2]. Noise-
less subsystems are supported only by group factors DJ ,
carrying �Sn irreps. In the static case, such subsystems
are found as commutant factors of the interaction algebra
of totally symmetric operators generated by su�2�, A �
�S 0

n [7,11]. Thus, the dimensions of such coding spaces
are given by the multiplicities in the Clebsch-Gordan
series for su�2�, dim(DJ� � �2J 1 1�n���n�2 1

J 1 1�!�n�2 2 J�	, J [ N�2. Recently, a constructive
scheme has been proposed for performing universal QC on
qubits encoded in noiseless subsystems supported by col-
lective noise [16]. Notably, the Heisenberg interaction
alone is found to be universal on coded states. The same
construction applies in our setting, with the additional con-
straint that the required control Hamiltonians are fast modu-
lated at the same rate as the b.b. control within a cycle.

Example 3: The collective rotations decoupling
group.— Let G be the continuous group generated by the
Lie algebra L � su�2� of collective spin operators. The
operators commuting with G belong to the group algebra
�Sn introduced above. One can achieve decoupling ac-
cording to G by performing the projection (1) with respect
to a suitable finite-order symmetrizing group of unitaries
F such that PG �Ea� � PF �Ea� � 0 for every a [11].
Noiseless subsystems can be supported by either com-
mutant factors, in which case dim(CJ� � �2J 1 1�n!�
��n�2 1 J 1 1�!�n�2 2 J�!	, or by group factors, for
which dim�DJ � � 2J 1 1. If encoding in CJ subsystems
is chosen, the scheme for universal QC via Heisenberg
Hamiltonians described in [16] can be fully implemented
according to weak�slow control.

In summary, we presented dynamical procedures for
generating and controlling sectors of the state space of a
generic open quantum system, which are (ideally) im-
mune to environmental noise. The presence of nontrivial
symmetries is identified as a key element common to both
active error suppression and passive error avoidance meth-
ods. In spite of the mathematical resemblance, however,
the two strategies are physically very different. In particu-
lar, the limit of long reservoir correlation length, which
underlies the latter in the presence of collective noise, is
replaced by the requirement of long reservoir correlation
time in the former, which explicitly relies on the non-
Markovian nature of quantum noise. The combination
of decoupling and coding procedures results in a scheme
for performing universal quantum computation on noise-
protected subsystems which is highly appealing in terms
of both the attainable encoding efficiency and the overall
control resources. Our analysis suggests that appropriate
use of quantum coding may allow in general for increased
flexibility on ways to achieve universality and fault-
tolerance in quantum computation.
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