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We present a general formulation of spin-dependent transport through a clean one-dimensional inter-
acting quantum wire or carbon nanotube, connected to noncollinear ferromagnets via tunnel junctions.
The low energy description of each junction is given by a conformally invariant boundary condition
representing exchange coupling, in addition to a pair of electron tunneling operators. The effects of the
exchange coupling are strongly enhanced by interactions, leading to a dramatic suppression of spin ac-
cumulation: a direct signature of spin-charge separation. Finally, backscattering induces nonequilibrium
oscillations in the current-voltage relation.

PACS numbers: 71.10.Pm, 72.10.–d, 75.70.Pa
Recent studies on metal-ferromagnet hybrid systems
have revealed new and interesting physics due to the
interplay between the electronic charge and spin [1], e.g.,
the giant magnetoresistance effect [2]. Following the
initial spin-injection proposal [3], the work of Johnson
and Silsbee [4] and subsequent advances have opened
the way for the field of spintronics, where the electron
spin is the central element for information storage and
transport [5]. Spin-dependent transport plays an impor-
tant role in quantum computation proposals, and has
already led to new technological applications. In this
context, a detailed understanding of transport through
ferromagnetic-normal-ferromagnetic devices is both of
fundamental and technological interest. In such structures,
the current-voltage relation is predicted to sensitively
depend on the relative angle u between the magnetization
directions of the ferromagnets (FMs) [2,6,7].

Current theoretical models [6,7] are based on Fermi liq-
uid theory, thereby ignoring the effect of interactions in the
metal. As the inevitable miniaturization of spin-dependent
devices proceeds, however, at least the interconnects must
ultimately reach the one-dimensional (1D) quantum limit,
in which Fermi liquid theory breaks down [8]. This theo-
retically expected change from Fermi liquid to Luttinger
liquid (LL) behavior drastically alters transport phenom-
ena, as has recently been verified in experiments on charge
conduction in carbon nanotubes [9], which are nearly ideal
1D quantum wires (QWs) [10]. Despite these develop-
ments, spin injection into a LL has received surprisingly
little attention [11]. In this paper, we present a general
low-energy theory for spin transport in a LL, which di-
rectly applies to nanotubes and semiconductor QWs [12].
We assume, as expected theoretically [13] and recently
observed experimentally [14] for carbon nanotubes, that
spin-orbit coupling in the LL is negligible. Its inclusion is,
however, straightforward.

Our analysis shows that spin transport in LLs
is qualitatively different both from charge transport
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in LLs and from Fermi liquid spin transport. We focus for
concrete results on the case of an end-contacted quantum
wire, and assume that the distance L between contacts
is sufficiently long, max�V ,T � ¿ y�L, to ensure an
incoherent stepwise transport mechanism through the
tunnel barriers between each FM and the QW. (Here y
is the Fermi velocity, and we put e � kB � h̄ � 1.) A
complete analytic solution of this problem is contained in
Eqs. (2) and (12)–(14). In contrast to charge transport, we
find that spin conduction occurs not only through electron
transfer but also exchange. This exchange effectively
gives rise to a modification of the boundary conditions at
the end of the LL, e.g., for the left contact,

�JR � R�Q� �JL 1 �Jtunnel , (1)

where �JL�R is the left/right moving spin current into/out
of the contact, and �Jtunnel represents the effect of elec-
tron transfer [see Eq. (12)]. The effect of exchange
coupling is given by the one-parameter SO�3� matrix
R�Q� � exp�QG�, where Gmn �

P
l m̂lelmn , and m̂

is a unit vector in the direction of magnetization of the
FM. Physically, Q represents the angle an incident
spin in the LL precesses due to exchange interaction
with the FM. Because of spin-charge separation in the
LL, the exchange contribution is not suppressed by the
orthogonality catastrophe affecting the tunneling current,
and therefore dominates the physics in many situations.
This enhancement of the exchange current does not occur
in a Fermi liquid, and its observation would provide a
direct experimental signature of electron fractionalization.
In addition to the novel physics arising at the contact, we
find that a long ballistic QW exhibits a bulk precession
of the magnetization due to backscattering [of strength b,
see Eq. (16)],

y≠x �M 1 ≠t �J � b �M 3 �J , (2)

where �M � �JR 1 �JL and �J � �JR 2 �JL are the local
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magnetization and current in the QW, respectively. Equa-
tion (2) leads to oscillations in the nonlinear current-
voltage relation. Remarkably, the latter is a purely
nonequilibrium effect that arises from a marginally irrele-
vant backscattering interaction in the LL. The detailed
character of these oscillations is also influenced by
interactions.

We now turn to the derivation of these results. In the
incoherent limit, we may consider each contact separately,
as an initial system composed of two decoupled pieces,
H0 � HFM 1 HQW. The FM �x , 0�, described by HFM,
is polarized along direction m̂, while the SU�2� invariant
QW (x . 0) is described by HQW. The SU�2� invariance
guarantees the existence of a continuity equation for
spin density and current. At time t ! 2`, each half
is assumed at equilibrium at its own chemical potential,
mFM and mQW, and with a spin chemical potential �h (see
below) in the QW. We are interested in the steady state
achieved at t � 0, long after the tunneling perturbation
has been adiabatically turned on, H�t� � H0 1 edtH 0

(d ! 01). The calculation is nontrivial primarily due to
its nonequilibrium nature: the system evolves according
to H�t� while the initial states are distributed according to
exp�2bH0�. Consider

H 0 � FyWC 1 CyWyF , (3)

where F and C are spin-1�2 fermion annihilation opera-
tors at x � 0 for the FM and the QW, respectively. Em-
ploying the projection operators ûs � �1 6 m̂ ? �s��2, the
2 3 2 tunneling matrix W takes the form W �

P
s tsûs,

with spin-dependent transmission coefficients ts for
the spin quantization axis parallel to m̂. The junc-
tion is then characterized by the conductance G �
G" 1 G# and the polarization P � �G" 2 G#��G, where
G",# � �e2�h�jt",#j2 are the spin conductances [7].

From Eq. (3) and the spin continuity equation, the
tunneling spin current across the junction is �J �
2i�FyW �sC 2 Cy �sWyF��2. By defining H̃0 � H0 1

mFMNFM 1 mQWNQW 1 �h ? �SQW, the standard pertur-
bative result can be rewritten as

� �J� � Re
X
abgl

Z 0

2`
dt edt�W �s�ab�Uy�t�Wy�gl

3 ��Fy
a�0�Cb�0�,Cy

g �t�Fl�t���H̃0 . (4)

Thereby an intrinsically nonequilibrium expectation value
is expressed in terms of an equilibrium average using the
shifted Hamiltonian H̃0, where the nonequilibrium nature
of the problem is fully encoded in the time-dependent
unitary matrix U�t� � exp�i�V 1 �h ? �s�2�t�, with V �
mQW 2 mFM. A formula similar to Eq. (4) can easily
be written down for the charge current, I � i�FyWC 2

CyWyF�. Thus both charge and spin current can be cal-
culated using equilibrium correlation functions.

To proceed, we specify the HamiltoniansHFM andHQW.
For energies well below the electronic bandwidth D, the
F and C equilibrium correlators are identical for H0 and
H̃0, and, moreover, a noninteracting Fermi liquid model
with constant density of states (DOS) applies to the leads.
Because the lead couples to the QW only at x � 0, the
difference in DOS for majority and minority spin carriers
can be absorbed in a spatial rescaling of the Fermi fields
of the FM and a suitable redefinition of the transmission
coefficients (ts) [7]. Then

HFM � 2i
Z 0

2`
dx fytz≠xf , (5)

where the spinor f � fbb is indexed by b � �R,L�, de-
scribing right- and left-moving modes of the FM, and
by b � �", #� for the spin, with the boundary condition
fR�0� � fL�0�. Here, the Pauli matrix tz acts in the R�L
space. Putting F � f�0�, we see that F has SU�2� invari-
ant correlation functions. The low-energy description of
the QW is an interacting LL model,

HQW �
Z `

0
dx �2icyytz≠xc 1 u�cyc�2	 , (6)

where cR�0� � cL�0� and C � c�0�. Only the forward-
scattering interaction u is kept in Eq. (6). Alternatively,
the exponent a . 0 for tunneling into the end of the LL
(x � 0) serves to measure the interaction strength [8].

The SU�2� invariance of Eqs. (5) and (6) implies

��Fy
a�0�Cb�0�,Cy

g �t�Fl�t���H̃0
u�2t� � daldbgiC�2t� ,

where C�t� is the retarded Green’s function of the operator
F

y
" C" (the choice of spin components is arbitrary). From

Eq. (4) and the corresponding expression for I, it is then
straightforward to obtain

� �J� � 2
G
2

X
s

��Pm̂ 1 sĥ� ImC̃�V 1 hs�2 1 id�

2 Psm̂ 3 ĥReC̃�V 1 hs�2 1 id�� ,
(7)

�I� � 2G
X
s

�1 1 Psm̂ ? ĥ� ImC̃�V 1 hs�2 1 id� ,

(8)

where C̃�V � �
R
dt C�t�eiVt . The terms involving [8]

Ia�V ,T � 
 G ImC̃�V 1 id�

� GT �T�D�a sinh�V�2T �

3

Ç
G

µ
1 1

a

2
1 i

V
2pT

∂ Ç2
(9)

have a simple interpretation in terms of tunneling via
Fermi’s golden rule, as can be seen from the spectral repre-
sentation of C̃. However, the appearance of ReC̃ in Eq. (7)
indicates the presence of a physical process other than tun-
neling. It can be shown [6,13] that it corresponds to a vir-
tual process in which an electron near the Fermi energy in
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the QW hops into a state of the FM (which could be far
from the Fermi energy) and hops back, thereby generating
an exchange coupling. We thus include it from the start,
H ! H0 1 H 0 1 H 00, with

H 00 � 2Km̂ ? Cy �sC�2 . (10)

Since the FM possesses a nonvanishing average magneti-
zation, the spin operator in the FM may be replaced by this
average to leading approximation.

It is helpful to view both H 0 and H 00 in a renormaliza-
tion group (RG) framework, as perturbations to a decou-
pled fixed point described by H0. Standard arguments give
the scaling dimension of both ts and K , Dts � 1 1 a�2
and DK � 1. The scaling dimension DK is not renormal-
ized due to spin-charge separation in the QW. A simple
calculation (for a . 0) gives the RG scaling equations

≠�jtsj
2��� � 2ajtsj

2, ≠�K��� � c�jt"j2 2 jt#j
2� ,

where � � ln�D�E�, and c is a nonuniversal constant.
Following the RG flow from the ultraviolet cutoff
D down to energy E � max�T ,V � ø D, we find
jtsj2�E� � jtsj2�E�D�a , and

K�E� � K 1 a21cGP�1 2 �E�D�a� ¿ jtsj
2�E� .

Therefore the tunneling spin current is much smaller than
the exchange contribution. Neglecting the tunneling con-
tribution completely, one still obtains a T -independent ex-
change spin current as T ! 0.

This fact can be understood from a simple analogy to
the Andreev current through a ballistic superconductor-
normal-superconductor (SNS) junction [15]. Let us con-
sider a LL connected to two insulating FMs at x � 0
and x � L, with m̂ 3 m̂0 fi 0. This is an equilibrium
situation, which can be modeled using Eq. (6) for the LL
and two copies of Eq. (10) for the contacts to the FMs.
The exchange interaction operates entirely within the spin
sector of the LL due to spin-charge separation. Since
the charge sector is decoupled, we are free to consider
it at the noninteracting point, u � 0. Then the result-
ing fictitious charge boson and the physical spin boson
can be combined and refermionized into a spinful Dirac
fermion h. Choosing arbitrary quantization axes m̂ � x̂
and m̂0 � cos�u�x̂ 1 sin�u�ŷ, it is instructive to perform
the particle-hole transformation h# ! h

y
# . This yields

the Hamiltonian,

Hh � 2iy
Z L

0
dx hytz≠xh

2 Re�KD�0� 1 K 0D�L�eiu� , (11)

where D�x� � h"�x�h#�x�. Equation (11) describes a
ballistic SNS junction, and, for phase twist 0 , u , 2p
between the superconductors, supports an equilibrium
current due to Andreev reflection. Since the Andreev
current is yhytzh, the original FM-LL-FM device indeed
has a nonzero spin current Jz . The analogy to a SNS
3466
junction also demonstrates that this current does not rely
upon the incoherence of the two contacts.

A more general perspective on the exchange coupling
can be gained by viewing the low-energy physics entirely
in terms of boundary operators and boundary conditions
[16]. For that purpose, we may make an arbitrary choice
of short-scale physics, and let the exchange coupling
act on right-movers slightly away from the junction. In
this case, using the boundary condition cL�0� � cR�0�,
the equations of motion for the spin currents can be
integrated over the junction region to give the steady-state
relation �JR�01� � R�Q� �JL�01� (the brackets denoting
expectation values are omitted henceforth). The parameter
Q � K�y ultimately defines the “exchange coupling
constant” of the low-energy theory. In principle, since
the boundary exchange operator is exactly marginal, Q
need not be small. Then the “bulk” spin currents are
�JL � �JL�01� and �JR � �JR�01� 1 �Jtunnel, and we obtain
Eq. (1), with the tunneling spin current

�Jtunnel � 2
1
2

X
s

�Pm̂ 1 sĥ�Ia�V 1 hs�2,T � . (12)

The term proportional to ReC̃ in Eq. (7) has been dropped,
as its physical effects are included via the SO�3� rota-
tion R. Since the magnetization far from the contact is
�M � x �h with the LL spin susceptibility x , one can then

compute the spin current �J for arbitrary exchange coupling
Q. We arrive at the general result [17]

�J � Sx �h 1 �1 2 S� �Jtunnel , (13)

where S � �R 2 1���R 1 1� is a real antisymmetric
matrix. Similarly, the charge current is

I � 2
X
s

�1 1 sPm̂ ? ĥ�Ia�V 1 hs�2,T � . (14)

From Eqs. (13) and (14), by exploiting spin and charge
current conservation in order to obtain mQW and �h, one
can then compute all transport properties in a given circuit
for arbitrary parameters [13].

We now specialize to a FM-LL-FM device with identical
contacts at T � 0 and applied voltage V within y�L ø
V ø D. For algebraic simplicity, we require P ø 1 1
a. For a tunneling contact, one expects Q ø 1 [6], and
Eq. (13) then yields

�J � 2�Qx�2�m̂ 3 �h 1 �Jtunnel .

Under these conditions, it is straightforward to obtain the
u-dependent FM-LL-FM current-voltage relation,

I�u� �
GV
2

�V�D�a
µ
1 2 P2 tan2�u�2�

tan2�u�2� 1 Ya�V �

∂
,

(15)

where Ya�V � � 1 1 �2Qx�G�2�1 1 a�22�V�4pD�22a .
For a ! 0, this reproduces the result of Ref. [7]. No-
tably, unless the magnetizations of the FMs are antiparal-
lel (u � p) or the exchange coupling vanishes (Q � 0),
the spin accumulation effect [1], in which the current is
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reduced due to pileup of spin in the QW, is strongly sup-
pressed by the voltage dependence of Ya . Physically, this
suppression is caused by the exchange coupling which is
much more efficient in relaxing the injected spin polariza-
tion compared to the tunneling current.

Finally, we turn to backscattering electron-electron in-
teractions of the form

Hb � 2b
Z L

0
dx �JL ? �JR . (16)

For a carbon nanotube, with the lattice spacing a and the
tube radius R, one may estimate b � ae2�R [10]. Since
Hb is marginally irrelevant in a single-channel QW, it is
usually neglected in the LL model (6). Nevertheless, as is
shown here, dynamical effects caused by (16) can be im-
portant. The equations of motion away from the contacts
give Eq. (2) and y≠x �J 1 ≠t �M � 0. In the steady state,
we have conserved spin current �J, and a bulk precession
equation for �M. Since �M � x �h, the vector ĥ must then
precess around �J .

To get sizable consequences, detailed analysis [13]
shows that it is essential to have small exchange couplings.
For simplicity, we put Q � 0 below. For the FM-LL-
FM device,

ĥ�0� ? ĥ�L� � cos�Dw�, Dw � bJL�y . (17)

Since Dw ~ L, precession will then always be significant
for a sufficiently long QW. The computation of �h�0� and
�h�L� leads to the self-consistency equation,

�1 2 x2� cos2

µ
px

cos�u�2�
V
DV

�V�D�a
∂

� sin2�u�2� ,

(18)

whereDV � 8py��GPbL cos�u�2��. Here solutions x �
xn (n $ 0) in the interval 0 # x # cos�u�2� have to be
found. The current through the device is then

In�V � �
GV
2

�V�D�a�1 2 P2�1 2 x2
n�V ��	 . (19)

The solution In corresponding to n full preces-
sion periods exists only for voltages V . Vn 

D�DV�D�1��11a�n1��11a�. Using typical parameters
appropriate for a 1 mm long single-wall nanotube, one
finds V1 � 0.1 to 1 V. In general, the current-voltage
relation could then be multivalued, where, in the regime
Vn , V , Vn11, the solution In�V � is expected to be
realized. Hence, the current-voltage relation becomes os-
cillatory, with sawtoothlike oscillations. The observation
of several periods could provide a direct and accurate
measurement of a via the Vn.

In conclusion, we have presented a general formalism
for spin-dependent transport through interacting 1D con-
ductors. An experimental check of the theory should be
possible by measuring the current-voltage relation for a
ferromagnet-nanotube-ferromagnet device. The approach
is general enough to apply to numerous other problems.
Several interesting extensions currently under investigation
are the description of bulk-contacted wires, inclusion of the
subband degree of freedom of single-wall nanotubes, LL
to LL contacts, and the ballistic-diffusive crossover poten-
tially relevant for multiwall nanotubes.
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