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Testing the Kibble-Zurek Scenario with Annular Josephson Tunnel Junctions
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In parallel with Kibble’s description of the onset of phase transitions in the early Universe, Zurek
has provided a simple picture for the onset of phase transitions in condensed matter systems, supported
by agreement with experiments in 3He and superconductors. We show how experiments with annular
Josephson tunnel junctions can, and do, provide further support for this scenario.

PACS numbers: 67.40.Vs
As the early Universe cooled it underwent a series of
spontaneous phase transitions, whose potential inhomo-
geneities (monopoles, cosmic strings, domain walls) have
observable consequences, for structure formation, in par-
ticular. These defects appear because the correlation length
j of the field (or fields) whose expectation value is the or-
der parameter is necessarily finite for a transition that is
implemented in a finite time

Using nothing more than simple causal arguments Kib-
ble [1,2] made estimates of this early field ordering, and
the density of topological defects produced at grand uni-
fied theory transitions at 10235 s. Unfortunately, because
the effects of their evolution are not visible until the de-
coupling of the radiation and matter 106 yr later, it is
impossible to provide unambiguous checks of these predic-
tions. However, causality is such a fundamental notion that
Zurek suggested [3,4] that identical causal arguments, with
similar predictions, were applicable to condensed matter
systems for which direct experiments on defects could be
performed. The hope is that successful tests of these pre-
dictions could lead to a better understanding of phase tran-
sitions in quantum fields.

Whether for the early Universe or condensed matter,
consider a quench of the system in which its temperature
T �t� is reduced as time passes. In the vicinity of the criti-
cal temperature Tc we assume that the temperature T de-
creases linearly with time t at a rate dT�dt � 2Tc�tQ ,
tQ being the quenching time.

Suppose that the “equilibrium” correlation length
jeq�t� � jeq���T �t���� of the order-parameter field, and its
relaxation time t�t�, diverge at t � 0 (when T � Tc) as

jeq�t� � j0

Ç
t

tQ

Ç2n

, t�t� � t0

Ç
t

tQ

Ç2g

. (1)

The fundamental length and time scales j0 and t0 of a sys-
tem are determined from its microscopic dynamics. One
definition of t�t� is that c̄�t� � jeq�t��t�t� denotes the
maximum speed, at time t, at which the order parameter
can change. In quantum field theory (QFT) c̄�t� � c0, the
speed of light in vacuo.

Although jeq�t� diverges at t � 0 this is not the case
for the true nonequilibrium correlation length j�t�. Kibble
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and Zurek made two assumptions. First, the correlation
length j̄ of the fields that characterizes the onset of order is
the equilibrium correlation length j̄ � jeq�t̄� at some time
t̄ constrained by causality. Second, at this time, defects
appear with separation jdef � O�j̄�.

To determine t̄ we rephrase the original Kibble-Zurek
argument in a way appropriate to Josephson tunneling
junctions (JTJs), so as only to discuss times t . 0. We
begin by noting that, in the adiabatic regime away from
the transition, static defects can be thought of as kinks,
balls, lines, or sheets of “false” vacuum or disordered
ground state, of thickness O���jeq�t����. (For 3He vortices
can be more complicated, but our general argument is unaf-
fected.) Thus �jeq�t� � djeq�t��dt , 0 measures the rate
at which these defects contract, i.e., the speed of inter-
faces between ordered and disordered ground states. Since
�jeq�t� decreases with time t . 0, the earliest possible time
t at which defects could possibly appear is determined by
j �jeq�t�j � c̄�t�, given our definition of c̄�t�. Although this
gives a lower bound for t̄, as an order of magnitude esti-
mate we identify this time t with t̄, whence

t0 ø t̄ � �tg
Qt0�1��g11� ø tQ . (2)

The corresponding smallest [4] correlation length is

j̄ � jeq�t̄� � j0

µ
tQ

t0

∂n��g11�
¿ j0 . (3)

Because of the qualitative nature of the arguments, factors
close to unity are omitted. (These results, without any
additional factors, were originally obtained by Zurek on
considering the time 2t at which the field freezes in.)
Further, at the same level of approximation, we shall use
mean field critical indices throughout. Measurements [5,6]
of total vortex density in transitions of 3He-B support the
result (3), when taken together with jdef � O�j̄�.

As an independent test of the assumptions Zurek sug-
gested using (3) to measure topological defect density (in
which defects and antidefects carry opposite weight). This
is most easily done in “one-dimensional” annular geome-
tries, for which experiments were originally proposed [4]
with 4He which, however, has j̄ so small that the creation
© 2000 The American Physical Society
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of an effectively one-dimensional system is extremely dif-
ficult. A recent experiment [7] with annular arrays of
high-Tc superconducting islands coupled by grain bound-
ary Josephson junctions confirms part of the picture, but
suffers in enforcing a predetermined domain structure. We
also wish to check prediction (3) by using annular JTJs.
As we shall see, for such JTJs j̄ is macroscopically large,
permitting them to be effective one-dimensional systems.

An annular JTJ consists of two superimposed annuli
of ordinary superconductors of thickness ds, separated by
a layer of oxide of thickness dox, whose relative dielec-
tric constant is er . Its order parameter is the relative
phase angle f � u1 2 u2 of the complex order param-
eters C1 � r1 exp�iu1� and C2 � r2 exp�iu2� of the two
superconductors (labeled 1 and 2). After the transition
has been implemented, in the adiabatic regime at tempera-
ture T , f satisfies the dissipative, one-dimensional sine-
Gordon (SG) equation

≠2f

≠x2 2
1

c̄2�T �
≠2f

≠t2 2
b

c̄2�T �
≠f

≠t
�

1

l
2
J�T �

sinf ,

(4)

with periodic boundary conditions [8]; x measures the dis-
tance along the annulus, its width w ø lJ�T � being ig-
nored and b is a characteristic frequency that accounts for
the viscous drag. The velocity c̄ � c̄�T �, which depends
on the nature of the junction, is the Swihart [9] velocity,
the speed of light in a superconducting-insulating-super-
conducting transmission line. In the Josephson context,
it determines the maximum speed at which the order pa-
rameter f can change.

The topological defects of the JTJ, the solitons of the
sine-Gordon theory, are termed fluxons. Their static equi-
librium thickness is the Josephson coherence length lJ�T �,
which plays the role of jeq�T� earlier.

Let us attempt to repeat the Kibble-Zurek analysis di-
rectly on quenching a JTJ with quench time tQ . For
simplicity we begin with a symmetric JTJ, in which the
electrodes are made of identical materials with common
critical temperatures Tc. At time t after the transition
lJ�t� � lJ���T �t���� is given by

lJ �t� �
q

h̄�2em0de�t�Jc�t� , (5)

in which Jc is the critical Josephson current density. In (5)
de�t� is the magnetic thickness. Specifically, if lL�t� is the
London penetration depth of the two (identical) supercon-
ducting sheets, then

de�t� � dox 1 2lL�t� tanh
ds

2lL�t�
,

where lL�t� � lL�0��
p

1 2 ���T �t��Tc���4 � lL�0��2
p

t̄�tQ .
Neglecting the barrier thickness dox ø ds, lL gives
de � ds close to Tc, i.e., the magnetic thickness equals
the film thickness and can be set constant in (5).
All the t dependence of lJ resides in Jc which, for the
symmetric JTJ has the form [10]

Jc�t� �
p

2
D�t�
erN

tanh
D�t�

2kBT �t�
. (6)

In (6) D�t� is the superconducting gap energy and varies
steeply near Tc as

D�t� � 1.8D�0�
µ
1 2

T �t�
Tc

∂1�2

� 1.8D�0�

s
t

tQ
,

and rN is JTJ normal resistance per unit area. Introduc-
ing the dimensionless quantity a � 1.6D�0��kBTC whose
typical value [D�0� and Jc�0� denote the respective values
at T � 0] is between 3 and 5, enables us to write Jc�t� as

Jc�t� � aJc�0�
µ
1 2

T �t�
Tc

∂
� aJc�0�

t
tQ

. (7)

Thus, in the vicinity of the transition,

lJ�t� � j0

µ
tQ

t

∂1�2

, (8)

corresponding to n � 1�2 in (1), where

j0 �

s
h̄

2em0dsaJc�0�
. (9)

On the other hand, for a finite electrode thickness tunnel
junction, the Swihart velocity takes the form [10]

c̄�t� � c0

q
dox�erdi�t� ,

where

di�t� � dox 1 2lL�t� coth
ds

2lL�t�
�

l
2
L�0�
ds

µ
tQ

t

∂
,

near the transition. Thus c�t� shows critical slowing down
at the transition, as

c̄�t� � c̄0

µ
t

tQ

∂1�2

,

where c̄0 � c0

q
dsdox�erl

2
L�0�. These indices �n � 1�2,

g � 1� are typical of condensed matter systems. The
causal constraint gives t̄ �

p
t0tQ , with t0 � j0�c̄0. In-

serting reasonable values [10] of j0 � 10 mm and c̄0 �
107 m�s, gives t0 � 1 ps, and assuming tQ � 1 s, we
find t̄ � 1 ms. The causal Josephson penetration length
is then

lJ � lJ�t� � j0

µ
tQ

t

∂1�2

� j0

µ
tQ

t0

∂1�4

� 10 mm .

(10)

This lJ , which should characterize fluxon separation at
a quench for a symmetric JTJ is far too large. Fortunately,
the manufacture of JTJs typically yields nonsymmetric de-
vices with more acceptable properties. Suppose the two
3453
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superconductors, 1 and 2, now have different critical tem-
peratures Tc2 . Tc1. Fluxons appear only at temperatures
T , Tc1, from which we measure our time t. At this time

D2�Tc1� � 1.8 D2�0�
µ
1 2

Tc1

Tc2

∂1�2

,

and D1�t� � 1.8 D1�0�
p

t�tQ . The critical Josephson cur-
rent density J 0

c�t� for a nonsymmetric JTJ, being propor-
tional to D1�t�D2�t� [10], behaves just after the transition
as

J 0
c�t� �

µ
1 2

Tc1

Tc2

∂1�2

a0J 0
c�0�

µ
t

tQ

∂1�2

, (11)

where J 0
c�0� � pD1�0�D2�0���D1�0� 1 D2�0��erN , and

a0 � �D1�0� 1 D2�0���kBTc,1, provided D2�Tc,1� ø
2pkBTc,1. This is the case here.

The crucial difference between (11) and (7) is in the
critical index. Near t � 0, we now find

lJ�t� � j0

µ
1 2

Tc1

Tc2

∂
21�4µ

tQ

t

∂1�4

, (12)

where j0 is as in (8), since J 0
c�0� is indistinguishable from

Jc�0� and a0 is comparable to a. For the critical behavior
(12) to be valid, rather than (8) we need 1 2 Tc1�Tc2 ¿
O�t�tQ� � O�1026�, which is always the case. For a
typical value �1 2 Tc1�Tc2� � 0.02 the critical time t is
now determined by (g � 3�4)

t̄ � t
4�7
0 t

3�7
Q

µ
1 2

Tc1

Tc2

∂21�7

� 0.24 ms ,

with our parameters. In turn,

lJ�t� � j0

µ
1 2

Tc1

Tc2

∂21�4µ
tQ

t0

∂1�7

� 1.4 mm (13)

is an order of magnitude smaller than l̄J of (10).
While new experiments are required, old experiments

on JTJs by one of us [11] are compatible with these
predictions, although their specific parameters are not
optimal. In these experiments nonsymmetric annular
Nb�Al 2 AlOx�Nb JTJs (Tc,2�Tc,1 2 1 � 0.02) with
circumference C � 0.5 mm were quenched with a quench
time tQ � O�1 s�. The intention was, primarily, to pro-
duce fluxons for further experiments, and the density
at which they were produced was secondary. From the
parameters quoted in [11] for sample B, we estimated
j0 � 6.5 mm, c̄0 � 107 m�s, and t0 � 0.65 ps. In-
serting these specific values in (13) gives l̄J � 1 mm
(with experimental uncertainty of up to 50%). Although
C � l̄J we would have expected to see a fluxon a few
percent of the time, given that the variance Dn in the num-
ber of fluxons is Df�2p. Indeed, in practice (invariably
single) defects formed once every 10–20 times.

We have no detailed knowledge of how the cooling takes
place, but do not expect temperature inhomogeneities to
be important. The critical slowing down of c̄�t� provides a
necessary condition for defects to survive inhomogeneity
3454
[12] and, with empirically comparable j0, t0, and tQ , the
situation is no better or worse for JTJs than with any other
superconducting system undergoing a mechanical quench.
Other samples of the same circumference but with different
l̄J have been tested. Although none had C�l̄J large, it was
observed that the likelihood of seeing a fluxon was greater
the larger its value, as we would have predicted, although
this was not quantified. This suggests that temperature
inhomogeneities are not the direct cause of the observed
fluxons.

There are theoretical, as well as experimental, uncertain-
ties. The SG equation (4) can only make sense once the
individual superconductors have adjusted themselves. Re-
peating Zurek’s analysis of the Gross-Pitiaevsky equation
for individual superconductors [4] gives a minimum time
at which the sine-Gordon equation is valid of t̄S �

p
t0tQ

where t0 in (9) is now determined [4] from Gorkov’s equa-
tion as t0 � p h̄�16kBTc � 0.15 ps for Tc � 10 K (jus-
tified here by the success of Feynman’s coupled model
equations for C1 and C2; for example, see Ref. [10]). The
resulting t̄S � 0.4 ms is commensurate with the values of
t̄ for the typical symmetric and nonsymmetric cases, falling
between them. Whereas this suggests that the SG equation
is valid for symmetric JTJs at time t̄, it also suggests that
we should evaluate lJ�t� at t̄S , rather than t̄ for the non-
symmetric case. However, for our typical parameter values
the difference between lJ�t� and

lJ�tS� � j0

µ
1 2

Tc1

Tc2

∂21�4µ
tQ

t̄0

∂1�8

� 1.1 mm (14)

is so small as to be ignorable, given the crudity of the
bounds. For the specific sample B of [11] the decrease is
similar, at lJ�tS� � 0.7 mm, and equally ignorable.

Further, although the prediction (3), together with
jdef � O�j̄�, has been taken, without additional qualifi-
cation, as the direct basis for the successful experiments
[5,6] in 3He, and experiments in 4He [13,14] and high-Tc

superconductors [15], the causality argument that we have
presented here is very simplistic. For superfluids obeying
time-dependent Ginzburg-Landau (TDGL) theory (and
QFT) we know [16] that, at early times, the length j̄ is,
correctly, the correlation length of the fields when they
have frozen in after the transition. However, we also know
[17,18] that the separation of defects is determined largely
by the separation of the zeros of the fields which define
their cores. The separation of zeros is a function of the
short-range behavior of the correlation functions [17,18],
rather than the long-range behavior that determines j̄.
A priori, j̄ does not characterize defect separation.

Nonetheless, several numerical [19,20] and analytic cal-
culations [16,21,22], based on TDGL theory, have con-
firmed that the critical index of (3) is, indeed, the correct
behavior for defect separation. The reason why this is so
is essentially a matter of dimensional analysis. The den-
sity of zeros is, approximately, a ratio of moments of the
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power in the field fluctuations, at early times at least. This
leads to strong cancellations of the effects of the micro-
scopic interactions of the system in question.

At the same time, the critical time t characteristically
underestimates the time at which the order parameter
achieves its equilibrium magnitude, which is a more
sensible time to begin to count defects. However, if these
other systems are a guide [16,21,22] the true time t� is
t� � O�t̄�, since the unstable long wavelength modes that
set up large scale ordering have amplitudes that grow
exponentially. As a result any new scales only occur
logarithmically in t��t̄. In fact, a limited calculation, with
4He in mind, suggests [23] that jdef�t�� � j̄ when count-
ing topological density on an annulus. Thus, although
the causality bounds are not saturated, their consequences
(2) and (3) survive qualitatively and justify experimental
confirmation.

That causality now seen as a constraint, but not the mi-
croscopic mechanism, helps explain why the most recent
4He experiment [14] failed to see any vortices. A major
reason (nothing to do with causality) is that vortices are
most likely to decay much more rapidly [22] than they
were originally thought to do. However, because the 4He
quenches take place entirely within the Ginzburg regime,
thermal fluctuations make individual defects scale depen-
dent [21,22], and simple dimensional analysis most likely
breaks down, in a way that causality would not have sug-
gested. This is not the case with superconductors, for
which the Ginzburg regime is very small.

For that and other reasons, we are sufficiently optimistic
to be currently examining the feasability of fabricating JTJs
with larger values of C�l̄J with which to perform new
experiments.
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