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Critical Effects at 3D Wedge Wetting
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We show that continuous filling transitions are possible in 3D wedge geometries made from substrates
exhibiting first-order wetting transitions, and develop a fluctuation theory yielding a complete classifi-
cation of the critical behavior. Our fluctuation theory is based on the derivation of a Ginzburg criterion
for filling and also on an exact transfer-matrix analysis of a novel effective Hamiltonian that we propose
as a model for wedge fluctuation effects. The influence of interfacial fluctuations is very strong and, in
particular, leads to a remarkable universal divergence of the interfacial roughness j� � �TF 2 T�21�4

on approaching the filling temperature TF , valid for all possible types of intermolecular forces.

PACS numbers: 68.45.Gd, 68.35.Rh
There are two reasons why it is extremely difficult to
observe interfacial fluctuation effects at continuous (criti-
cal) wetting transitions in the laboratory [1]. First, critical
wetting is a rather rare phenomenon for which no examples
are known for solid-liquid interfaces and only a limited
number for fluid-fluid interfaces [2,3]. Second, the influ-
ence of interfacial fluctuations in three dimensions (d � 3)
is believed to be rather small [1]. For example, for sys-
tems with long-ranged forces, the divergence of the wetting
layer thickness � on approaching the wetting temperature
Tw is mean-field-like, � � �Tw 2 T �21, and the only pre-
dicted effect of fluctuations is to induce an extremely weak
divergence of the width (roughness) j� of the unbinding
interface: j� �

p
2 ln�Tw 2 T �. Nonclassical critical

exponents and an appreciable interfacial width are pre-
dicted only for systems with strictly short-ranged forces
[4], but even here the size of the asymptotic critical regime
is very small and beyond the reach of current experimental
and simulation methods [3,5,6].

The purpose of the present Letter is to show that these
problems do not arise for continuous (critical) filling or
wedge-wetting transitions [7–9] occurring for fluid ad-
sorption in three-dimensional wedges. First, we show, con-
trary to previous statements in the literature [8], that critical
filling can occur in systems made from walls that exhibit
first-order wetting transitions. Consequently, the observa-
tion of critical filling transitions is a realistic experimental
prospect. Second, we argue that interfacial fluctuations
have a strong influence on the character of the filling tran-
sition and, in particular, the interfacial roughness of the
unbinding interface, which is shown to diverge with a uni-
versal critical exponent. The fluctuation theory we develop
is based on the derivation of a Ginzburg criterion for the
self-consistency of mean-field (MF) theory and also an ex-
act transfer-matrix analysis of a novel interfacial Hamil-
tonian model for wedge wetting which we introduce to
account for the highly anisotropic soft-mode fluctuations.
This model leads to a complete classification of the critical
behavior in d � 3 and predicts some remarkable fluctua-
tion dominated phenomena which we believe may be tested
in the laboratory.
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To begin, we recall the basic phenomenology of wedge
wetting and highlight the mechanism by which critical fill-
ing occurs in wedge geometries even for walls exhibit-
ing first-order wetting transitions. Consider a wedge (in
d � 3) formed by the junction of two walls at angles 6a

to the horizontal (see Fig. 1). Axes (x, y) are oriented
across and along the wedge, respectively. We suppose the
wedge is in contact with a bulk vapor phase at temperature
T (less than the bulk critical value Tc) and chemical po-
tential m. Macroscopic arguments [7,8] dictate that at bulk
coexistence, m � msat�T �, the wedge is completely filled
by liquid for all temperatures Tc . T $ TF where TF is
the filling temperature satisfying Q�TF� � a. Here, Q�T �
is the temperature dependent contact angle of a liquid drop
on a planar surface. Thus, filling occurs at a temperature
lower than the wetting temperature Tw and may be viewed
as an interfacial unbinding transition (of first or second
order) in a system with broken translational invariance.
We refer to any continuous filling transition occurring as
T ! TF , m ! msat�TF� as critical filling. Also of interest
is the complete filling transition which refers to the con-
tinuous divergence of the adsorption as m ! msat�T � for
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FIG. 1. Schematic illustration of an interface configuration in
the wedge geometry showing the relevant diverging length scales
at the filling transition. The planar adsorption �p and planar
transverse correlation length jk remain finite at the transition.
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Tc . T $ TF which is known to be characterized by ge-
ometry dependent critical exponents [10]. Here, we focus
exclusively on critical filling and, in particular, the critical
singularities occurring as t � �TF 2 T ��TF ! 01 at bulk
coexistence. The phase transition is associated with the di-
vergence of four length scales (see Fig. 1) each character-
ized by a critical exponent: the midpoint (x � 0) height
of the liquid-vapor interface �0 � t2b0 , the midpoint in-
terfacial roughness j� � t2n� , the lateral extension of the
filled region jx � t2nx , and the correlation length of the
interfacial fluctuations along the wedge jy � t2ny . So far,
there has been no discussion of the values of these critical
exponents for three-dimensional systems beyond a simple
MF calculation for �0 [8]. On the other hand, transfer-
matrix studies [9] in d � 2 indicate that fluctuation effects
are very strong at wedge wetting and lead to universal
critical exponents b0 � n� � nx � 1. This is highly sug-
gestive that fluctuation effects play an important role in
d � 3, relevant to experimental studies.

Previous MF analysis [8] has shown that a suitable start-
ing point for the study of wedge wetting in open wedges
(small a) is the interfacial model

H��� �
Z Z

dx dy

∑
S

2
�=��2 1 W�� 2 ajxj�

∏
, (1)

where ��x, y� denotes the local height of the liquid-vapor
interface relative to the horizontal, S is the liquid-vapor in-
terfacial tension, and W��� is the binding potential model-
ing the wetting properties of the wall. At the MF level, this
functional is simply minimized to yield an Euler-Lagrange
equation for the y-independent equilibrium height pro-
file ��x�, S�̈ � W 0�� 2 ajxj�, where the dot and the
prime denote differentiation with respect to x and �, re-
spectively. This differential equation is solved subject to
the boundary conditions ���0� � 0 and ��x� 2 ajxj ! �p

as jxj ! `. Here, �p denotes the MF planar wetting
film thickness [i.e., W 0��p � � 0] and remains micro-
scopic at the filling transition. Integrating once the equa-
tion yields a simple equation for the midpoint height,
Sa2�2 � W��0� 2 W��p �, which can be solved graphi-
cally [8]. Note that at bulk coexistence Young’s equation
implies W��p � � 2SQ2�2 (within this small angle ap-
proximation) so that the present model immediately re-
covers the macroscopic result Q�TF� � a. Depending on
the form of W��� (at TF) the divergence of �0 as T ! T2

F
is first order or continuous. The condition for critical
filling is that between the global minimum of W��� at �p

and the extremum at � � ` there is no potential barrier.
Thus, walls exhibiting critical wetting necessarily form
wedges exhibiting critical filling. However, for walls ex-
hibiting first-order wetting, the filling transition is first
order or critical depending on whether the transition tem-
perature TF is greater or less than the spinoidal temperature
Ts �,Tw� at which the potential barrier in W��� appears.
Since the macroscopic condition Q�TF� � a implies that
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TF can be trivially lowered by making the wedge angle
more acute, it follows that walls exhibiting first-order
wetting transitions will, in general, exhibit both types of
filling transition (see Fig. 2). Note that the tricritical value
of the wedge angle a� separating the loci of first- and
second-order filling transitions will itself be rather small
for weakly first-order wetting so that the Hamiltonian (1)
is still valid. The MF value of the height critical exponent
b0 for critical filling follows directly from the equation for
�0 if we write the asymptotic decay of the binding poten-
tial as W��� � 2A�2p where A is a (positive) Hamaker
constant and p depends on the range of the forces. For sys-
tems with short-ranged forces, this decay is exponentially
small. A simple calculation then yields b0 � 1�p (quoted
in Ref. [9] and implicit in Ref. [8]) so that, for dispersion
forces (corresponding to p � 2), the MF prediction is
b0 � 1�2, while for short-ranged forces b0 � 0�ln�. The
structure of the MF height profile ��x� is particularly
simple near critical filling [8] and has crucial conse-
quences. In essence, the interface is flat [i.e., ��x� � �0]
for jxj � �0�a, while for jxj � �0�a the height decays
exponentially quickly to its asymptotic planar value �p

above the wall. Importantly, the length scale controlling
this exponential decay is the wetting correlation length
jk �

p
S�W 00��p� which remains microscopic at the

filling transition. One consequence of this is that the
lateral width of the filled portion of the wedge is trivially
identified as jx � 2�0�a so that nx � b0. More impor-
tant consequences of the height structure are considered
below.

We now turn to the main body of our analysis concern-
ing the nature of fluctuation effects at critical filling
and consider first fluctuations about the MF profile ��x�
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FIG. 2. Schematic surface phase diagram showing temperature
vs the opening angle a for a system undergoing a first-order
wetting transition at Tw in the planar case (a � 0). The filling
transition is only first order (F1) if it takes place at a temperature
above the spinoidal temperature Ts but becomes second order
(F2) if the filling temperature is less than Ts.
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as measured by the height-height correlation function
H�x, x0; ey� � 	d��x, y�d��x0,y0�
 where d��x, y� �
��x, y� 2 	��x, y�
 and ey � y0 2 y. To calculate the cor-
relation function, we first exploit the translational invari-
ance along the wedge and introduce the structure factor

S�x, x0; Q� �
Z

dey eiQeyH�x, x0; ey� . (2)

The assumption of MF theory is that fluctuation about
��x� is small and hence a Gaussian expansion of H���
about the minimum suffices to determine the correlations.
This leads to the differential (Ornstein-Zernike) equation

�2S≠2
x 1 SQ2 1 W 00���x� 2 ajxj�� 3

S�x, x0; Q� � d�x 2 x0� ,
(3)

where we have adsorbed a factor of kBT into the definitions
of S and W���. The structure of correlations across the
wedge is manifest in the properties of the zeroth moment
S0�x, x0� � S�x, x0; 0� which can be obtained analytically
using standard methods. We find
S0�x, x0� � �j���x�j 2 a� �j���x0�j 2 a�

(
1

2aW 0��0�
1

H�xx0�
S

Z min�jxj,jx0j�

0

dx

����x� 2 a�2

)
, (4)
where H�x� denotes the Heaviside step function [H�x� �
1 for x $ 0, H�x� � 0 otherwise]. From the properties
of the equilibrium profile ��x�, it follows that the length
scale jx also controls the extent of the correlations across
the wedge. In fact, it can be seen that correlations across
the wedge are very large and also (essentially) position
independent, provided both particles lie within the filled
region, implying that, at fixed y, the local height of the
filled region fluctuates coherently. On the other hand, the
correlations are totally negligible if one (or both) particles
lie outside the filled region since their asymptotic decay
is controlled by the microscopic length jk. These are
important remarks central to the development of a general
fluctuation theory of wedge wetting.

Turning next to correlations along the wedge, we note
that a simple extension of the above analysis shows that
the dominant singular contribution to the structure factor
has a simple Lorentzian form,

S�x, x0; Q� �
S0�0, 0�

1 1 Q2j2
y

; jxj, jx0j � jx�2 , (5)

with S0�0, 0� � a�2W 0��0� which shows a very strong di-
vergence as T ! T2

F . The correlation length along the
wedge is identified by jy � �S�0�W 0��0��1�2. Substitut-
ing for the form of W���, and recalling the divergence
of �0 at critical filling, leads to the desired MF result
ny � 1�p 1 1�2 for the correlation length critical expo-
nent as T ! TF at bulk coexistence. Note that jy ¿ jx

so that the fluctuations are highly anisotropic and are to-
tally dominated by modes parallel to the wedge direction.
The final length scale that we calculate within the present
MF/Gaussian analysis is the midpoint width j� defined
by j

2
� � 	���0, y� 2 �0�2
 � H�0, 0; 0� which may be ob-

tained from the Fourier inverse of S�x, x0; Q�. This leads
to the intriguing relation

j� �

s
jy

S�0
, (6)

which is one of the central results of this paper. In this
way, we are led to the remarkable prediction that the di-
vergence of j� at critical filling is universal, independent
of the range of the intermolecular forces, and of the form
j� � t21�4 which should be observable in experimental
and computer simulation studies. We shall argue below
that this result is not affected by fluctuation effects even
when MF theory breaks down.

The first step in the development of a fluctuation the-
ory for filling transitions is the derivation of a Ginzburg
criterion. The MF analysis presented above should be
valid if the fluctuations in the interfacial height are rela-
tively small. Thus, we require j���0 ø 1 or, equivalently,
t1�p21�4 ø 1, implying that MF theory, and the values
of critical exponents quoted above are valid in three di-
mensions only for p , 4. For p $ 4, fluctuation effects
dominate, and we can anticipate that the roughness j�

is comparable with the interfacial height �0. One way of
approaching this problem is to formulate a renormaliza-
tion group theory based on the effective Hamiltonian (1).
This is an extremely difficult task and one which we be-
lieve is unnecessarily complicated. In view of the extreme
anisotropy of fluctuations at filling transitions and their co-
herent nature across the wedge, we propose that the only
fluctuations that are relevant for the asymptotic critical be-
havior are those arising from the thermal excitations of the
midpoint height �0� y� along the wedge. More specifically,
for a constrained nonplanar configuration for the midpoint
distribution ��0� y��, we assume that all other fluctuations
are small and, hence, following established methods [11],
may be treated in saddle-point approximation. Thus, we
are led to a simpler wedge Hamiltonian (of reduced dimen-
sionality), F��0� y�� � minyH���x, y�� where the dagger
denotes the constraint that ��0, y� � �0� y� ; y. In this
way, we have derived the simpler one-dimensional model
(of three-dimensional filling)

F��0� �
Z

dy

∑
S�0

a

µ
d�0

dy

∂2

1 VF��0�
∏

, (7)

where the coefficient of the gradient term is the local height
dependent line tension describing the bending energy of
long-wavelength fluctuations along the wedge and VF is
the effective wedge filling potential which has the general
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expansion

VF��� �
S�Q2 2 a2�

a
� 1

A
�p 2 1�a

�12p 1 . . . .

(8)

Note that, in the critical regime, �Q�T � 2 a� � t, so that
minimization of (8) identically recovers the MF result for
�0. For p � 1, the second term in (8) is logarithmic, while
for short-ranged forces, it is exponentially small.

We propose that the effective Hamiltonian (7) contains
all the essential physics associated with the asymptotic
critical behavior at filling transitions. Two checks on this
hypothesis are that, in MF and Gaussian approximation,
the new model identically recovers the equation for the
midpoint height and structure factor emerging from the
more complicated model (1) in the same approximation.
The great advantage of the new model is, of course, that
due to its one-dimensional character it can be studied ex-
actly using transfer-matrix techniques. The (normalized)
eigenfunctions cn��0� and eigenvalues En of the spec-
trum are found by solving the differential equation (setting
kBT � 1 for convenience)

2
ac 00

n ��0�
S�0

1
3ac 0

n��0�
2S�2

0
1 VF��0�cn��0� � Encn��0�

(9)

from which the quantities of interest can be calculated.
In particular, the probability distribution for the midpoint
height P ��0� � jc0��0�j2 and the wedge correlation length
jy � 1��E1 2 E0�. The solution of this eigenvalue prob-
lem for the wedge potential (8) gives a complete clas-
sification of the critical behavior at critical filling. The
calculation confirms that MF theory is valid for p , 4
(predicting independently the same marginal value for p),
while the criticality is fluctuation dominated for p . 4
and is characterized by universal critical exponents b0 �
nx � n� � 1�4 and ny � 3�4. These exponents are per-
tinent to critical filling occurring in systems with short-
ranged forces and may be tested in Ising model simulation
studies similar to earlier work on critical wetting [5]. For
experimental systems with dispersion forces (p � 2), our
predictions are b0 � nx � 1�2, n� � 1�4, and ny � 1.
We emphasize that these MF predictions are independent
of our fluctuation model (7) since they follow from the full
interfacial model (1).

To finish our Letter, we make three final remarks. The
first concerns an important check of the general validity of
our fluctuation theory. The fluctuation model (7) can be
generalized to arbitrary bulk dimensions d corresponding
to wedges which are translationally invariant in d 2 2
directions. We have studied this model using functional
renormalization group techniques and found two fluc-
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tuation regimes for general dimension d , 4. For p ,

pc � 2�d 2 1���4 2 d�, the critical exponent b0 � 1�p,
corresponding to MF behavior, while for p . pc, the
transition is fluctuation dominated and b0 � �4 2 d��
2�d 2 1�. Importantly, for d � 2, these predictions cor-
respond to the known values of the critical exponents
for 2D wedge wetting found from exact transfer-matrix
analysis [9] of the full interfacial model (1). Second,
out of bulk two-phase coexistence [dm � msat�T � 2

m . 0] and close to filling, the midpoint height, correla-
tion lengths, and roughness show scaling behavior. For
example, in the fluctuation-dominated regime, the solution
of (9) shows that �0 � t21�4L�dmt25�4� where L�z � is
an appropriate scaling function. Thus, along the critical
filling isotherm (T � TF , dm ! 0), the height diverges
as �0 � dm21�5, which may be easier to observe in
experimental and simulation studies. Third, the effective
filling model that we have introduced can also be used to
study complete filling occurring for T . TF as dm ! 0.
However, the critical behavior here is found to be always
MF like [10].

In summary, we have developed a fluctuation theory
for critical effects at three-dimensional wedge wetting and
given a complete classification of the possible critical be-
havior. We believe that these striking predictions are open
to experimental verification, in wedge systems made from
substrates exhibiting first-order wetting.
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