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Neutron Resonance: Modeling Photoemission and Tunneling Data
in the Superconducting State of Bi2Sr2CaCu2O81d
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Motivated by neutron scattering data, we develop a model of electrons interacting with a magnetic
resonance and use it to analyze angle resolved photoemission and tunneling data in the superconducting
state of Bi2Sr2CaCu2O81d. We not only can explain the peak-dip-hump structure observed near the �p, 0�
point, and its particle-hole asymmetry as seen in superconductor-insulator-normal tunneling spectra, but
also its evolution throughout the Brillouin zone, including a velocity “kink” near the d-wave node.

PACS numbers: 74.25.Jb, 74.50.+r, 74.72.Hs, 79.60.Bm
Recent advances in the momentum resolution of angle
resolved photoemission (ARPES) spectroscopy have led to
a detailed mapping of the spectral line shape in the high-Tc

superconductor Bi2Sr2CaCu2O81d (BSCCO) throughout
the Brillouin zone [1,2]. In contrast to normal state data
where well defined excitations do not exist, quasiparticle
peaks were identified below Tc along the entire Fermi sur-
face [3]. Moreover, it has been known for some time that
near the �p , 0� (M) point of the zone, the spectral function
shows an anomalous line shape, the so-called “peak-dip-
hump” structure [4,5]. The new data indicate (a) near the
d-wave node of the superconducting gap, the dispersion
shows a characteristic “kink” feature: for jvj , vkink, the
spectra exhibit sharp peaks with a weaker dispersion, and
above this, broad peaks with a stronger dispersion [1,2];
(b) away from the node, the dispersion kink develops into a
“break”; the two resulting branches are separated by an en-
ergy gap, and overlap in momentum space; (c) towards M,
the break evolves into a pronounced spectral “dip” sepa-
rating the almost dispersionless quasiparticle branch from
the weakly dispersing high energy branch (the “hump”);
(d) the kink, break, and dip features all occur at the same
energy, independent of position in the zone [1].

Features similar to the ARPES spectrum near the M
point were earlier observed in tunneling spectroscopy
[6]. Experimental superconductor-insulator-normal (SIN)
junctions on BSCCO show a characteristic asymmetry,
with a more pronounced dip-hump structure on the
occupied side [7]. On the other hand, superconductor-
insulator-superconductor (SIS) junctions reveal a strong
dip-hump feature on both bias sides [8].

There have been several theoretical treatments which
assigned the anomalous ARPES line shape near the M
point of the zone to the coupling between spin fluctuations
and electrons [9–12]. Here, we are able to explain features
(a)–(d) of the ARPES data, as well as the SIN tunneling
asymmetry, in terms of the combined effect of (A) the flat
electronic dispersion near the M point of the zone and
(B) coupling of the fermionic degrees of freedom to a
bosonic mode which is sharp in energy and peaked in
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momentum near �Q � �p , p�. Our main result is that the
anomalous features in the dispersion and line shape for all
points in the zone have the same origin.

A resonance mode with these characteristics is observed
in inelastic neutron scattering experiments in bilayer
cuprates in the superconducting state [13,14]. The neutron
resonance lies below a gapped continuum, the latter having
a signal typically a factor of 30 less than the maximum
at �Q at the mode energy [15]. In order to extract the
essential physics, we concentrate on the mode part and
neglect the continuum. The latter contributes mainly to
additional damping at higher energies. We treat the mode
in a semiphenomenological way, taking the relevant pa-
rameters from experiment. We then calculate the resulting
electronic self-energy to second order in the coupling con-
stant. From the self-energy we directly obtain the spectral
function measured by ARPES, which we then use to calcu-
late the tunneling conductance. We caution that the simple
model employed here is designed only for the supercon-
ducting state. A proper description of the non-Fermi liquid
normal state would require a more sophisticated theory.

The retarded self-energy on the real energy axis is given
in particle-hole space by [16]

ŜR � 2
ig2

2m
2
B

�ĜK � xR 1 ĜR � xK � (1)

with A � B� �k, e� �
P

�q

R`

2`

dv

2p A� �k 2 �q, e 2 v�B� �q, v�,
and g the effective coupling constant. The Keldysh (K)
components are given in terms of retarded (R) and ad-
vanced (A) functions by ĜK � �ĜR 2 ĜA� �1 2 2f� and
xK � �xR 2 xA� �1 1 2b�, with the usual Bose (b) and
Fermi ( f) distribution functions.

The model for the mode is based on measurements of
the spin susceptibility from inelastic neutron scattering ex-
periments [14]. The mode energy will be denoted by V,
and its energy width is assumed to be irrelevant for the
self-energy. This assumption will be confirmed later. This
leads to the following model for the mode part of the
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susceptibility:

xR�A� �q, v� � 2f� �q�
µ

1
v 2 V 6 id

2
1

v 1 V 6 id

∂
. (2)

Here f� �q� describes the momentum dependence of the
mode and is assumed to be enhanced at the �p, p� point.
Using the correlation length j we write it as

f� �q� �
x �Qj22

j22 1 4�cos2 qx

2 1 cos2 qy

2 �
. (3)

Experimentally the energy integrated susceptibility at the
�p, p� wave vector, px �Q , was determined to be 0.95m

2
B

per plane for BSCCO [14], leading to x �Q � 0.3m
2
B. For

the correlation length, we take a conservative estimate of
j � 2a. This corresponds to a full width half maximum
of 0.26 Å21, as observed in YBCO, but somewhat smaller
than that estimated for BSCCO (0.52 Å21) [14] which we
feel is somewhat broad. The mode energy was chosen
to be V � 39 meV, which represents the reported values
between 35 and 43 meV [14].

Though x is “renormalized,” we use a bare Ĝ in Eq. (1).
This is the same approximation as in Ref. [17], where
it was shown that this is better than using renormalized
Ĝ with vertex corrections neglected. This is unlike the
electron-phonon problem, where Migdal’s theorem ap-
plies. We take the success of explaining the experimental
features as strong support of this approximation.

The bare Green’s functions with normal state disper-
sion j �k , gap function D�k , and excitation energy E�k �q

j
2
�k

1 D
2
�k

are

ĜR�A� �k, e� �
â �k

e 2 E �k 6 iG
1

b̂ �k

e 1 E �k 6 iG
, (4)

where a11 � �1 1 j �k�E �k��2, b11 � �1 2 j �k�E �k��2,
a12 � 2b12 � D�k�2E �k , etc. For the normal state dis-
persion we use a six-parameter tight binding fit [18].
We neglect bilayer splitting, as experiments suggest it is
absent in BSCCO [5]. A characteristic feature of this
dispersion is a flat band with a saddle point at M with en-
ergy jM � 234 meV. The superconducting gap function
is taken to be the d-wave D �k � D0�coskx 2 cosky��2
with a maximal gap value of D0 � 35 meV. We have
chosen G � 5 meV as an intrinsic lifetime broadening.
The coupling constant relevant for our model is g2x �Q ,
chosen to be �0.125 eV2�m2

B. Given a value x �Q � 0.3m
2
B,

this corresponds to g � 0.65 eV, the same value as used
in previous spin fluctuation work [19]. We performed the
v integration in Eq. (1) analytically and the convolution
product in momentum space via fast Fourier transform,
using 256 3 256 points in the Brillouin zone.

In Fig. 1 we show the renormalization function Z�e� �
1 2 S0�e��e, where S0 is the t̂0 component of the Ŝ ma-
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FIG. 1. Renormalization function Z�e� at the M � �p, 0�
point (solid line) and at the node �0.36p, 0.36p� (dashed line)
for T � 40 K.

trix. Since the �q integral in Eq. (1) is dominated by the re-
gions around the M point where the band is flat and close to
the chemical potential, there are features in the imaginary
part of the self-energy connected with the two extremal

energies D0 and EM �
q

j
2
M 1 D

2
0. These features do not

show dispersion, but a change in magnitude with position
in the zone which is determined by the momentum width of
the mode. This is the central result of this paper. More gen-
erally, the imaginary part of the self-energy is enhanced be-
tween the values e1 � D0 1 V and e2 � EM 1 V. For
jM approaching the chemical potential, EM approaches D0
resulting in a peaklike feature in the self-energy. For our
case, e1 � 74 meV and e2 � 88 meV. Because the spec-
tral weight of the mode is maximal near �Q � �p, p�, the
M points of the zone, which are connected by �Q, benefit
mostly. This results in stronger features in the self-energy
near the M points compared to, e.g., the nodal points. The
peaked structure in the imaginary part of the self-energy re-
sults (via Kramers-Kronig relations) in an enhancement of
the real part of the renormalization function for jej , e1,
and a reduction of it for jej . e2, as shown in Fig. 1. This
leads to a renormalization of the low-energy dispersion
of the spectra compared to the high-energy part. Since
the experimental energy width of the neutron resonance is
smaller than the variation in energy of typical features in
the self-energy, this confirms our assumption that the en-
ergy width of the mode is not relevant.

The spectral function is obtained by

A� �k, e� � 22 Im��ĜR� �k, e�21 2 ŜR� �k, e��21�11 . (5)

In Fig. 2 we show the spectral functions for momentum
cuts through the M point towards Y � �p , p� (MY cut),
and parallel to MY through the nodal point. Because
of particle-hole coherence factors, there are quasiparticle
peaks at M on both sides of the chemical potential. On the
negative energy side, the peak is more pronounced since
jM is negative, and a strong dip feature is present. The
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FIG. 2. Spectral function A� �k, e� for T � 40 K. Top panel:
for �k points along the cut parallel to MY through the order pa-
rameter node, from �0.20p, 0.36p� to �0.51p, 0.36p�. Bottom
panel: for �k points along the MY cut from �0, p� to �0.43p, p�.

asymmetry of the dip feature is a combined effect of the t̂3

component of Ŝ, which introduces particle-hole asymme-
try, and the inherent particle-hole asymmetry of the band
structure near the M point. Going from M towards the
Fermi surface (Fig. 2, bottom), the hump feature quickly
loses weight as observed in ARPES [1]. In the top panel
of Fig. 2 we show spectra for a cut parallel to MY through
the order parameter node at the Fermi surface. Near the
node there is only one peak crossing the chemical po-
tential. The dip-hump features are very weak near the
node and are presumably overshadowed by the additional
lifetime effects due to the continuum part of the spin
susceptibility. Note the much broader peaks for higher
energies, jej . 80 meV, compared to the sharper peaks
near the chemical potential, as observed in ARPES experi-
ments [1–3].

In Fig. 3 we present our results for the dispersion ob-
tained from the maxima of the occupied part of the spectral
function, A� �k, e�f�e�. Near the M point we observe an al-
most dispersionless strong peak feature at roughly the gap
energy 2D0, and a weaker hump feature at slightly below
2e2, consistent with experimental finding (c). The peak
feature, which without interaction with the mode would be
at EM , is pushed towards the chemical potential, thus end-
ing up close to D0 for not too small coupling constants.
The position of the hump feature is strongly dependent
on the coupling constant. We adjusted g to reproduce the
experimental value of about 2130 meV for the hump fea-
ture at M; this choice also results in the weak dispersion
of the hump feature as observed in experiment [1]. As one
goes away from M, the dispersion of the hump extends
farther below 2e2 and the peak starts to show dispersion,
until a characteristic break in the dispersion with a jump
at 	280 meV develops. This is exactly the experimental
finding in point (b). Note the stability of the characteristic
280 meV energy value for the break/dip feature through-
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FIG. 3. Calculated dispersion at T � 40 K obtained from the
maxima of the occupied part of the spectral function for cuts
along kx for fixed ky as indicated. Momenta are in units of
p. The size of the symbols represents the peak intensity. The
coupling constant is g � 0.65 eV except in panel 1, where we
show for comparison with panel 2 results for g � 0.39 eV. Note
striking similarity of this plot to the data of Ref. [1].

out the zone. This is a result of the dominance of the
region near M in the �q sum in Eq. (1), which sets the en-
ergy scale. Thus we confirm point (d) of the experimental
findings. As the nodal point is approached, the self-energy
becomes weaker due to the momentum dependence of the
mode. The sudden change in the linewidth for a cut parallel
to MY through the node (panel 2 of Fig. 3), as discussed in
Fig. 2, occurs around 280 meV, in accordance with point
(a). We still observe a weak break feature, which will be
smeared out by additional lifetime broadening from the
continuum part of the susceptibility. This weak break is
also reduced for a smaller coupling (panel 1), or if the
Lorentzian in Eq. (3) is replaced by a Gaussian. Note that
in accordance with experiments, the velocity near the nodal
point is reduced compared to that for higher binding ener-
gies, causing a velocity kink.

Knowing the spectral function throughout the zone, we
are able to calculate the tunneling spectra given a tunnel-
ing matrix element T�k �p . From the SIN tunneling current
I�V � one obtains the differential conductance, dI�dV . As
usual we neglect the energy dependence of the SIN matrix
element jM �kj

2 � 2e
P

�p jT�k �p j
2AN � �p, e�, where AN is the

spectral function of the normal metal. The SIN tunneling
current is then given by

I�V � �
X

�k

jM �kj
2

Z `

2`

de

2p
A� �k, e� � f�e� 2 f�e 1 eV �� .

(6)

In the top panels of Fig. 4, we show results for the SIN
dI�dV for several coupling strengths. We model the
tunneling matrix element for two extreme cases: for
incoherent tunneling we assume a constant jM�kj

2 � M2
0 ,
3263
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FIG. 4. Differential tunneling conductance for SIN (top) and
SIS (bottom) tunnel junctions for T � 40 K. Units are eM2

i

for SIN and 2e2T 2
i for SIS. Left for isotropic tunneling (i �

0), right for coherent tunneling (i � 1). Curves are for g �
0.39 eV (dotted), 0.65 eV (full line), and 0.90 eV (dashed).

whereas for coherent tunneling we use jM �kj
2 � 1

4M2
1 3

�coskx 2 cosky�2 [20]. In both cases, we observe a clear
asymmetry with a dip-hump structure on the negative bias
side and a very weak feature on the positive side of the
spectrum, as in experiment [7]. The pronounced asym-
metry is a result of the shallow band near the M point,
jM 	 2V, which enhances the coupling to the resonance
mode for populated states. Note that the hump position is
strongly dependent on the coupling constant in contrast to
the position of the dip minimum. The asymmetry in the
peak height on either side of the spectrum is sensitive to
the coupling constant too. In weak coupling the negative
bias peak is higher due to the Van Hove singularity at
the M point. For stronger coupling the pronounced dip
at negative bias reduces the height of the coherence peak
on this side and shifts the hump to higher energies. For
g � 0.65 eV (full lines in Fig. 4) the peaks at positive
and negative bias have roughly the same height, as in
experiment [7].

For an SIS junction, the single particle tunneling current
is given in terms of the spectral functions by

I�V � � 2e
X
�k �p

jT�k �p j
2

Z `

2`

de

2p
A� �k, e�A� �p, e 1 eV �

3 � f�e� 2 f�e 1 eV �� . (7)

Again we show results for incoherent tunneling (jT�k �p j
2 �

T2
0 ) and for coherent tunneling with conserved parallel mo-

mentum, jT�k �pj
2 � 1

16T2
1 �coskx 2 cosky�4d�kjj, �pjj

[20]. We
show the SIS dI�dV in the bottom panels of Fig. 4. Our
theoretical SIS curves for incoherent tunneling resemble
very closely the experimental results for BSCCO [8], un-
like for coherent tunneling which exhibits negative dI�dV
3264
regions due to the strong anisotropy of T�k �p . Note that the
dip-hump feature is strong on both sides for an SIS junc-
tion in contrast to the SIN results.

In conclusion, we have shown that the momentum dis-
persion of the ARPES spectra in the superconducting state,
as detailed in recent experiments, can be explained by a
simple model which has as components (A) a flat band
region near the chemical potential in the normal state dis-
persion near the �p , 0� point of the zone; (B) a nearly
dispersionless bosonic mode which is peaked in momen-
tum near the �p, p� point, and which interacts with the
fermionic degrees of freedom. The theoretical tunneling
spectra obtained with the same parameter set are consis-
tent with the experimental findings of an asymmetry of the
peak-dip-hump structure in SIN tunneling spectra.
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