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We consider the nonstationary quantum relaxation of the Ising spin chain in a transverse field of
strength A. Starting from a homogeneously magnetized initial state the system approaches a stationary
state by a process possessing quasi-long-range correlations in time and space, independent of the value
of h. In particular, the system exhibits aging (or lack of time-translational invariance on intermediate
time scales) although no indications of coarsening are present.

PACS numbers: 75.10.Hk, 05.50.+q, 64.60.Ak, 68.35.Rh

Nonequilibrium dynamical properties of quantum sys-
tems have been of interest recently, experimentally and
theoretically. Measurements on magnetic relaxation at
low temperatures show deviations from the classical ex-
ponential decay [1], which was explained by the effect of
quantum tunneling. On the theoretical side, among others,
integrable [2] and nonintegrable models [3] were studied in
the presence of energy or magnetic currents, as well as the
phenomena of quantum aging in systems with long-range
[4] and short-range interactions [5].

Here we pose a different question: Consider a quantum
mechanical interacting many body system described by a
Hamilton operator H without any coupling to an external
bath, which means that the system is closed. Suppose the
system is prepared in a specific state |¢) at time ¢ = 0,
which is not an eigenstate of the Hamiltonian A. Then we
are interested in the natural quantum dynamical evolution
of this state which is described by the Schrodinger equation
and is formally given by

1w (0) = expl 1 A1) o). n
Obviously the energy E = (ifio|H|io) is conserved. In
particular, we want to study the time evolution of the ex-
pectation value A(f) of an observable A or the two-time
correlation function Cag(t1, 1) of two observables A and
B, defined by

A1) = (olAn (1) lo),
Cap(ti, 12) = (ol {An (1)) By (t2)}s 1o ,

where Ay (1) = exp(+iH1)Aexp(—iHrt) is the A in the
Heisenberg picture (with /i set to unity) and {AB}s =
1/2(AB + BA) is the symmetric product of two operators.

One should emphasize that in such a situation one does
not expect time translational invariance to hold, which
would manifest itself in, for instance, A(z) = Ay = const
and Cyp(t1,15) = Cap(t;i — 12). There will be a transient
regime in which these relations are violated and, depend-
ing on the complexity of the system, this nonequilibrium
regime will extend over the whole time axis. Then we de-
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note it as quantum aging, as it can be observed, e.g., for
the Universe, which is (most probably) a closed system.

To be concrete we consider the prototype of an interact-
ing quantum system, the Ising model in a transverse field
in one dimension defined by the Hamiltonian

1 Lz L
H = ——|:Z ool + hZa'fj|,
21 =1
where o) * are spin-1/2 operators on site /. We consider
initial many body states that are eigenstates either of all
local o or of all local o} operators. We will mainly
consider fully magnetized initial states, either in the x or
the z direction, which we denote with |x) and |z) and which
obey oj|x) = +|x) and oflz) = +]z).

In passing we note that one obtains the zero temperature
equilibrium situation by choosing the ground state of the
Hamiltonian (3) as the initial state. This ground state has
a quantum phase transition at 4~ = 1 from a paramagnetic
(h > 1) to a ferromagnetic (& < 1) phase. The former has
long-range order (LRO) along the z direction; the latter has
spontaneous symmetry breaking LRO along x. Moreover,
the nonzero temperature (T > 0) equilibrium relaxation
of (3) has been considered in [6] corresponding to an open
system coupled to a heat bath in the stationary state, which
is not related to the nonstationary closed system we con-
sider here.

The expectation values and correlation functions we are
interested in involve the spin operators o] and oj. To
compute them, we express the Hamiltonian (3) in terms of
fermion creation (annihilation) operators [7,8] 1 q+ (ng)

1
H=Zeq<n;nq — E)
q

The energy of modes, €,, ¢ = 1,2, ..., L are given by the
solution of the following set of equations:

eV (1) = —hd,(I) — D (1 + 1),
€,®,() = —W,(I — 1) — h¥, (),

and we use free boundary conditions which implies for the
components ®,(L + 1) = ¥,(0) = 0. The spin opera-
tors can then be expressed by the fermion operators as

3)

“4)

(&)
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o] = AiB1AB; ... Aj- 1B 1Ay,
. (6)
o = —ABy,
with

L .
A= @) () + ).

Bi= > W) (0] = ny).

and the time evolution of the spin operators follows from
the time dependence of the fermion operators: Insert-
ing n; (1) = e"Sm., ny(1) = e~ "%, into Eq. (7) one
obtains

(N

At) = Z[<A1Ak>tAk + (A;Bi):Byi],
: (8)
B(t) = Z[(BzAk>rAk + (B1By):Byi],
k

with the time-dependent contractions

(AiAr) = D cos(egt) Dy (D, (k),
q
(AiBy): = (BxAry = i Y _sin(e,) @, (¥, (k), (9)
q

(BiBi) = D cos(eg1) W, ()P, (k).
q

For general position of the spin, [ = O(L/2), one finds
simple formulas for the expectation values and correlation
functions involving o} operators, whereas the calculation
of those involving ¢ operators is a difficult task and the fi-
nal result is complicated [9,10]. However, both the surface-
spin autocorrelations and the end-to-end correlations are
given in quite simple form, both for the equilibrium [8]
and for the nonequilibrium case.

First we study the x-end-to-end correlations defined by

cr’ (1) = (ol {of (Dot (O}slvo) (10)

which contain information about the existence or the ab-
sence of magnetic order in the x direction. The single time
t at which the correlations between the two spins are mea-
sured indicates the age of the system after preparation. For
the fully ordered initial state |¢p) = |x) we obtain

Cr (1) = (AJA)KBLBL), + KABLYI?,  (11)

where the first term on the right-hand side of Eq. (11) is the
product of surface magnetizations: 77, = {x|o7(¢) |x) =
(A1A1); and m; = {x|oi(t) |x) = (B.Br);. In the next
paragraph we show that lim,_ [(A;B);|> = 0. There-
fore limy ;.. C1” () = m: and the stationary state, start-
ing with |x), has long-range order for A < 1 with m; =
|®;(1)]> = 1 — h2. Thus the surface order parameter, 77,
vanishes continuously at the transition point, 2. = 1, with
a nonequilibrium exponent, B1° = 1.

The connected correlations are defined via Eq. (2) as
Cag(t1,12) = Cap(t1,12) — A(11)B(2). The time depen-
dence of the connected end-to-end correlations Ci’x(t) =
KABL)|? = |3, sin(e 1)y (1) [2(—1)4]? is a result of
interference effects due to an interplay of length, L (via the
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difference in the excitation energies: €, — €,-1 ~ 1 /L),
and time, . Evidently they vanish both for small (1 < L)
and large (¢ > L) times, in the latter case due to random
phase factors. For intermediate time scales we obtained
through a numerical analysis of the formula the following
features of the connected correlations which can be read
from Fig. 1: (i) They are zero for times smaller than a
time 7,(L) which is equal to the system size L for h = 1
and increases monotonically with decreasing 4 for 1 < 1.
(ii) At t = 7,(L) a jump occurs to a value that decreases
algebraically with L:

Cii(L) = Cr'(t = my(L)) o L9, (12)

with a = 2/3 for h =1 and a = 1/2 for h > 1 [11].
(iii) For ¢t = 7,(L) the correlations decay slower than ex-
ponentially as can be seen from the figure. (iv) For ¢t =
37,(L) again a sudden jump occurs as for ¢t = 75(L) fol-
lowed by a slightly slower oscillatory decay. (v) This pat-
tern is repeated for time # = 57,(L),77,(L), ... but gets
progressively smeared out by oscillations.

These features can be interpreted as follows: the ele-
mentary (tunnel) processes of the quantum dynamics of
the Hamiltonian (3) are spin flips induced by the trans-
verse field operator . In this picture two spins can act
only coherently and thus give a contribution to the con-
nected correlation function if the information about such
a spin flip process reaches the two spins simultaneously.
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FIG. 1. Connected end-to-end correlations C;* (and Ci° for

bottom left) with fixed system size L and field 4 as a function
of the time # calculated with Eqs. (11) and (13). The left column
shows data for decreasing field strength 7 = 1.0, 0.8, 0.6; the
broken vertical line is at t = 512 = L. The upper right figure
shows C;* for different system sizes at & = 1.0, the middle right
plot shows C;* at i = 3.0, and the lower right figure shows the
modulus of C;* for h = 1. Here the broken vertical line is at
t = 256 = L /2. For the interpretation, see text.
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Feature i tells us that signals generated in the center of
the system travel with a speed proportional to L/7,(L) to
the boundary spins and reaches both simultaneously. At
this moment C;™(r) jumps to its maximum (see ii). Af-
ter this, this signal is superposed by other more incoherent
signals (see iii). However, the strongest initial signal is re-
flected at both boundaries and reaches the opposite bound-
ary spins simultaneously again at time ¢t = 37,(L) (see iv),
and so on. More and more incoherent processes occur in
the meantime, resulting in feature v.

A similar behavior can be observed for the end-to-end
correlations when starting with the state |z), which is

Cro(t) = D (A1Biy(BLA: — (AlA)(BLBL),).
%

(13)
The only difference in the behavior of C;™(r) reported
above is (a) its long time limit vanishes for all values of
h and (b) 7,(L), i.e., the earliest time at which the two
boundary spins are correlated is only half as big as in the
previous case. Obviously it is easier to generate and to
propagate spin flip signals when starting with a z state.
Next we study the bulk behavior of the expec-
tation values and correlations involving o] opera-

sz,}l/p(ll, n) = (Yol{oj(t)ofi(t2)}slo)

The autocorrelation function (I = I') for (1; = 1) is gen-
erally nonstationary for intermediate times, 11 /(& — 1) =
O(1). Inthe limit L — o at A = 1 it can be expressed with
Bessel functions via Eq. (15):

C;,’Iw(tl»Q) = J2(2t, — 2t)
1
- Z[f(fz + 1) = glt, — n)], (16)

where f(x) = J2(2x) + Jo(2x), g(x) = J2(2x) — Jo(2x),
and the + (—) sign refers to ¢ = x(z). Thus we
conclude that for intermediate times there is aging
in the z-component autocorrelation function, con-
trary to what is reported in [5]. Asymptotically we
have lim,]_.wCi’,w(tl,tz) = (e¥)?, and the connected
two-time correlations depend only on the time differ-
ence, e.g., for h = 1 via Eq. (16) lim,]_mfilz’}(//(tl,tz) =
J3@2[t, — 1) — {J1@2[r» — 1 ])}*. For bulk spins this
stationary correlation function decays algebraically as
~(t, — t;)~? for any value of A.

Next we consider the spatial connected equal-time cor-
relations, C*¥(r, t), which follow from Eq. (15) with ; =
tp=tand [ = (L — r)/2,I' = (L + r)/2. At the criti-
cal point, # = 1, in a similar way to the autocorrelation
function one gets in the limit L — o,

- (r 1) = [2% JZ,(4I)T

rr—1
— ——— Jor+1(40) o1 (41),

412 (17

(A1AD) -1 (BiB1Yiy—1, — (AiBi)—1 {(ArB) -, — [AAL)[BBY'i* + [AB]);*[BAL}".

tors. First we introduce the shorthand notation,
[DDY) = Si(DiB)ADrAi)r — (DuBi)i{DiAi)),

with D;,D; = A; or B; and i(k) = k,(k + 1) for =
zZ, (x) and start with the nonequilibrium expectation value

el (1) = (oloi(t) o) = [AB}]. (14)

We note that the equilibrium (i.e., ground state) expecta-
tion value, e}, corresponds to the energy density in the
two-dimensional classical Ising model and we use this
terminology also in this nonequilibrium situation. At
the transition point, # = 1, the contractions in Eq. (9)
can be expressed in terms of Bessel functions, J,(x), as
(AjAk) = (BiBi): = (=1)!"*J52(21) and (A;By), =
i(—= D)y 5v1(28) for [ = O(L/2). Equation (14)
then yields e;//(t) = 1/2 = J|(4t)/4¢t, where the + (—)
sign refers to ¢y = z(x). Thus for long times the nonequi-
librium energy density approaches the limit E;ﬂ =1/2
algebraically ~r~*2. It can be shown that the decay
exponent, 3/2, is universal; its value does not depend on
the value of 0 < h < 0. Moreover, the stationary value
of the energy density for a bulk spin can be calculated
exactly for all initial states [9].

The two-spin nonequilibrium dynamical and spatial con-
nected correlations can be expressed as

(15)

which is valid both for |¢g) = |x) and |¢g) = |z). In
Fig. 2 we show the r dependence of C%*(r,t) for vari-
ous times f. We see that for fixed time ¢ the correlations
increase proportional to r? for distances r = ¢ to a maxi-
mum value C%Z (¢) at r = 2t, which decreases with time
proportional to ¢!, For distances larger than r = 2t they
drop rapidly, faster than exponentially, to zero.

The latter two features correspond perfectly to what
we observed also for the z-end-to-end correlations [see
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FIG. 2. Connected o, correlation function C*¥(r, 1) at h = 1
given by the expression Eq. (17) for different times (r = 2",
n=1,2,3,... from left to right) in a log-log plot. The two
straight lines indicate the initial 7> dependence of C*¥(r,t) for
fixed ¢ as well as the r~! dependence of the maximum value at
r =2t
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TABLE I. Power law dependencies of correlations on and behind the front.
h=1 h>1
Xmax a = (max a > amax a = (max a > 0max
Qix(t = al) 1 L7253 L} L-1/2 L
Czl(t — CYL) 1/2 L—l/4 L_1/2 e e
Cz‘/’(t = aL) 1/2 L~5/4 L} 1-5/8 L1
C‘Z'/f(t = ar) 1/2 r74/3 1 r’2/3 r1

Eq. (13)]: spins that are separated by a distance r can be
correlated only after the first signal from spin flip processes
in between them reaches simultaneously the two spins, i.e.,
for times ¢ larger than r/2 (for h = 1 and |o) = |z). The
first feature, that correlations for distances smaller than
2t are diminished only algebraically, is different from the
faster decay of end-to-end correlations and is character-
istic for bulk spins. For r = 2¢ the correlation function
C*¥(r,t) obeys the characteristic scaling form

CoV(r,1) = t7"g(r/1) (18)

with g(x) « x? for x < 1. The scaling parameter r/t ap-
pearing in the scaling function g(x) is reminiscent of the
fact that space and time scales are connected linearly at the
critical point in the transverse Ising chain since the dynami-
cal exponent is z = 1. Away from the critical point we
have to evaluate our expressions [9] for C»¥(r, t) numeri-
cally. The results show similar features as the case h = 1
and will be presented elsewhere [9].

For completeness we finally list our results for the maxi-
mum value for connected spin-spin correlations since they
decay algebraically with various new exponents; a detailed
derivation will be given in [9]. We confine ourselves to
h = 1 since here the time 7;, of maximum correlation is
fixed, whereas for 27 << 1 the value of 7, depends on &
and has to be determined numerically, which renders the
precise determination of the decay exponents difficult. We
define the ratio @ = t/L and ap,, = 71(L)/L and con-
sider equal time correlations for fixed values of «. In the
picture of a propagating front that separates a region in
the space-time diagram for the chain in which spins are
uncorrelated from a region in which they are correlated,
one observes quasi-long-range correlations on the front,
the latter being defined by the ratio ¢/L = apm,. For
distances smaller than the distance of maximum correla-
tion or times larger than 7, the correlations decay slower
than exponential in time, e.g., algebraically for bulk spins
[C*¥(t,r = fixed) ~ ¢~%]. When we vary both space and
time with fixed ratio #/L or t/r we get power laws, as long
as we stay behind the front (i.e., t = 75,). For @ > apax
we again observe power laws, but with different exponents;
they are listed in Table 1.

To conclude, we studied a novel type of dynamically
produced long-range correlations in a quantum relaxation
process in a quantum spin chain. Starting with a homo-
geneous initial state the quantum mechanical time evo-
lution according to the Schrodinger equation drives the
system into a stationary state, which has algebraically de-
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caying time-dependent autocorrelations but no critical fluc-
tuations. However, during the relaxation process spin-spin
correlations build up upon arrival of a front of coherent
signals, which afterwards decay algebraically in the bulk.
On the front and behind it for a fixed ratio of space and
time scales one observes quasi-long-range order. This does
not depend on any external parameter like the transverse
field. This type of algebraic correlation needs not to be
triggered by some tuning parameter and is therefore rem-
iniscent of phenomena in self-organized criticality [12].
The scenario we have reported here is a result of quantum
interference and one may expect that a similar one holds
for other quantum systems, too. At this point one should
mention the possibility of coarsening in quantum systems
as reported, for instance, in [13], which is different from
the scenario we have reported here.
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