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A series of high resolution, 3D, resistive MHD numerical simulations of the reversed-field pinch
are performed to obtain scaling laws for poloidal beta and energy confinement at Lundquist numbers
approaching 106. Optimum plasma conditions are attained by taking the transport coefficients to be
classical, and ignoring radiation losses and resistive wall effects. We find that poloidal beta scales as
bu ~ I20.40 and that the energy confinement time scales as tE ~ I0.34 for fixed I�N , with aspect ratio
R�a � 1.25.

PACS numbers: 52.55.Hc, 52.25.Fi, 52.30.Jb, 52.65.Kj
The reversed-field pinch (RFP) is regarded as one of
the leading fusion confinement schemes alternative to the
tokamak. Its potential stems from the possibility of high
ratio bu of plasma to magnetic pressure, i.e., efficient use
of the magnetic field, and compact size. An interesting
and important feature of the RFP plasma is a nonlinear dy-
namo mechanism that continuously converts poloidal flux
supplied from the external circuit into toroidal flux in the
plasma core in such a way as to sustain the mean magnetic
field configurations against resistive diffusion [1].

In present RFP experiments the dynamo fluctuations
are thought to be responsible for anomalously large radial
particle and energy transport, so that the scaling laws asso-
ciated with the fluctuations are of importance to an assess-
ment of the RFP as a fusion reactor. Early experimental
results at low values of the Lundquist number S � tR�tA

(where tR is the resistive diffusion time and tA is the
Alfvén transit time) indicated that these fluctuation levels
may decrease with increasing Lundquist number [2], im-
plying improved confinement properties in high tempera-
ture reactor relevant regimes. Later experiments with S
approaching 106 indicated a weaker scaling [3].

In this work we investigate the confinement properties
of RFP plasmas by carrying out a series of high resolu-
tion, three-dimensional, nonlinear, resistive MHD numeri-
cal simulations whose aim is to determine the dependence
of the poloidal beta bu and the energy confinement time
tE on experimental parameters, such as the plasma current.
These calculations include the effects of finite pressure,
Ohmic heating, and convection and anisotropic heat con-
duction. By using plasma parameters relevant for present
day RFP experiments, scaling laws that are in substantial
agreement with the international RFP database, and that
may be useful for predicting performance at higher tem-
peratures and plasma currents, are obtained. Throughout
we have attempted to obtain configurations with optimal
confinement properties, so that the results of this study
should be considered to be optimistic.
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The simulations are run for low aspect ratio (major ra-
dius to plasma minor radius ratio R�a � 1.25) to save
computing time. This particular choice is not crucial, since
RFP confinement properties are predominantly governed
by the stochasticity of the magnetic field in the plasma
core, which in turn is a function of the level of radial mag-
netic field fluctuations. This level is independent of aspect
ratio; larger aspect ratio results in more unstable modes at
lower amplitudes which add up to a comparable fluctuation
level [4]. We have verified this by performing validation
runs at R�a � 4.

The scaling results so obtained indicate that the “conven-
tional” RFP (i.e., with no flow or current profile control)
may not extrapolate well to thermonuclear conditions, pri-
marily because of persistent magnetic fluctuations that are
large enough to make the core magnetic field stochastic.
This serves to emphasize the importance of experimen-
tal techniques for enhancing confinement, such as current
profile and sheared flow control [5–7], that may thus be
required to establish the reactor potential of the RFP.

Fluctuation scaling is a long-standing and debated is-
sue for the RFP. Because of the large number of resonant
surfaces, the resistive instabilities that are the fundamen-
tal dynamo mechanism [1] locally destroy any nested flux
surfaces: the saturated magnetic islands are large enough
to overlap, and the magnetic field becomes stochastic. A
magnetic field line may then wander from the core to the
edge of the plasma, instead of being confined to a flux sur-
face. This establishes channels for particles and energy to
escape in the radial direction along the magnetic field lines.
It is thus desired that the amplitudes of the characteris-
tic magnetic fluctuations decrease sufficiently rapidly with
increasing Lundquist number (increasing temperature), so
that these anomalous losses may diminish to acceptable
levels for reactor plasmas.

Numerical studies of the fluctuation levels of non-
linearly evolving RFP plasmas have shown that the satu-
rated fluctuation amplitudes decrease with increasing S.
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In one study [8] the scaling law dB ~ S20.22 was obtained
for Lundquist numbers in the range 3 3 103 # S # 105.
Here dB is the rms value of the variation of the total
volume averaged magnetic field in time, including all
poloidal and toroidal modes. Another study [7] obtained
a fluctuation scaling of S20.18 in the range 2.5 3 103 #

S # 4 3 104. These studies were carried out for zero
pressure plasmas without thermal transport. Our results
with finite pressure effects and thermal transport indicate
that the magnetic fluctuation level remains high for values
of S approaching 106.

The computation of parallel transport in the RFP is dif-
ficult because of the fast time scales involved, and has
received particular attention. In this work we use the al-
gorithm developed by Sovinec [7]. It combines the semi-
implicit method with subcycling to achieve accuracy and
numerical stability for large time steps.

In order to address the fusion potential of the RFP, we
have striven to attain upper limits of confinement states;
no impurity radiation is assumed, and we use a stabiliz-
ing conducting wall at the plasma boundary and classical
values for transport coefficients. These simulations were
carried out for plasma currents in the range 18–252 kA
and densities in the range �0.5 7.0� 3 1019 m23. This
resulted in on-axis temperatures in the range 26–105 eV
and on-axis Lundquist numbers in the range 2 3 104 #

S�0� # 7 3 105.
The resistive MHD equations, when normalized to the

Alfvén time and pinch radius, are
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We have defined b0 � 4m0n0T0�B2
0 and S0 � tR�tA0 �

5.09 3 1014aB0T 1.5
0 ��m0.5n0.5

0 Zeff lnL�. The dependent
variables have their usual meanings. Classical, radially
dependent transport parameters [9] are used; h � T21.5

(Spitzer resistivity), k
i
� � k�0n2��B2T0.5�, and k

e
k �

kk0T2.5. Classical ion viscosity is given by n � n0T2.5,
with n0 � 8.5 3 104S0T2.5

0 ��aB0n0.5
0 lnL�. The local

Lundquist number and poloidal beta are given by
S � S0BT1.5�n0.5 and bu � b0�p��B2

u�1�, respectively.
Normalized pressure p � nT obtains through using
p0 � 2n0T0 � B2

0b0��2m0�. The mass density is as-
sumed to be spatially uniform and constant in time.

Our studies have shown that confinement properties
are largely independent of the exact choice of viscosity.
Thus, for reasons of numerical stability, we choose local
viscosity to be sufficiently large to produce an effective
Reynolds’ number that is small enough to avoid the genera-
tion of subgrid scale turbulence and the resulting nonlinear
numerical instabilities. This is required in any nonlinear
fluid simulation. Since the dynamo in the RFP arises from
the nonlinear interaction of several long wavelength modes
that are well resolved on the grid [1], the essential physics
of plasma relaxation and profile sustainment are not
affected.

In all cases, we have chosen the plasma current to line
density ratio to be I�N � 2.8 3 10214 A m. This is close
to the experimental lower limit, similar to the Greenwald
limit for tokamaks. It may also be shown that kk0 cannot be
chosen smaller than the value given below without further
decreasing I�N . Thus we may use the classical value for
kk0 to obtain the best reasonable confinement, i.e., small
values of parallel heat conduction.

Numerical studies of transport scaling have not been
previously performed. This may be because of the ap-
parent difficulties arising from the number of indepen-
dent parameters appearing in the problem. In contrast,
in this study we have found that only two dimensionless
parameters are needed to determine optimized confine-
ment. This is because the five parameters b0, S0, k�0,
kk0, and n0 are not independent, since k�0 � 10.0b0m0.5,
and kk0 � 32.5n0m0.5 (expressed in SI units with m being
the ion to proton mass ratio). Thus only the two parameters
b0 and S0 are required for computing optimal confinement
within the resistive MHD model. We have assumed there
exists a perfectly conducting wall at the plasma boundary,
that Q � Bu�a���Bz� � 1.8 and p�a��p�0� � 0.1 (in the
initial state). Further, edge resistivity is modeled by super-
imposing a resistivity profile that is unity in the core and
increases very close to the wall. A sufficient grid resolution
is found to be 300 radial mesh points, 42 axial modes, and
5 poloidal modes. All calculations are run until a quasi-
steady state with a self-sustaining dynamo is reached, and
time-averaged values of poloidal beta and energy confine-
ment time are determined.

Values of poloidal beta for various values of b0 and
S0 are displayed in Fig. 1. These data are obtained by
averaging over a sawtooth period, which usually lasts a
few percent of the resistive time. Using linear regression
analysis, the data points in Fig. 1 can be well represented
as a power law (indicated as solid curves)

bu � 3.65b0.40760.011
0 S20.16560.007

0 . (4)

In a similar manner, the on-axis temperature T �0� can also
be found as a function of b0 and S0 from the time-averaged
T �0��T0 data. Using the definition of S0 there results the
323



VOLUME 85, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 10 JULY 2000
FIG. 1. Numerical results for poloidal beta (bu) as a function
of the basic parameters b0 and S0. Solid lines represent the
power law fit, given by Eq. (4), to data points.

scaling T0 ~ a20.5m0.25Z0.5
effb

0.25
0 S0.5

0 , and we find

T �0� � 0.221a20.5m0.25Z0.5
effb20.32060.018

0 S0.31160.011
0 .

(5)

The numerical parameters b0 and S0 can now be related to
physical quantities. Using Eq. (5) and the definitions given
following Eqs. (1)–(3), along with the relation for the total
current I � 2paB0�Bz�Q�m0, we can eliminate b0 and
S0 from Eq. (4) in favor of T �0� and I . The result is

bu � 156a0.04m20.02Z20.04
eff T �0�1.09I21.01. (6)

It should be noted that, in the general case, bu is a function
of both I and I�N [we show below how T �0� can be
obtained as a function of I for fixed I�N]. Any attempt
to obtain experimental scalings of bu with I or I�N only
is thus misleading unless the other independent variable is
kept constant.

Equation (4), which applies to a time-averaged steady
state, suggests that bu is a function of the initial conditions
as represented by b0 and S0. However, b0 and S0 are just
functions of the normalization parameters (a, T0, n0, and
B0) and in steady state bu must not retain a memory of the
initial state, since the RFP is a strongly driven, dissipative
nonlinear system; it will depend only on geometry and
boundary conditions. Thus, for an achieved steady state,
we are free to replace T0 with T �0�. The definitions of
b0 and S0 then allow us to use Eq. (5) to relate the on-
axis temperature T �0� (in eV) to the total current I . The
result is

T �0� � 0.071a20.22m0.11Z0.22
eff I0.56. (7)

Substituting Eq. (7) into Eq. (6) yields

bu � 8.8a20.20m0.10Z0.20
eff I20.40. (8)

Equations (7) and (8) are scaling laws for steady state on-
axis temperature T �0� and poloidal beta bu at a constant
value of I�N �� 2.8 3 10214 A m�. For comparison, the
experimental scalings T ~ I�n0.5 (or ~ I0.5 for constant
324
I�N) and bu ~ I20.93n0.46 ~ I20.47 were recently found
on the Extrap T2 RFP [10]. Earlier confinement experi-
ments on the smaller Extrap T1 RFP gave the dependence
bu ~ I20.67n0.16 ~ I20.51 [11].

We now consider the scaling of tE , the energy confine-
ment time. Following [12] we define (with Vp � 2p2Ra2,
the plasma volume)

tE �
3
2 �p�Vp��UloopI� . (9)

Assuming that the input power is balanced by Ohmic dis-
sipation, and using the definitions of poloidal beta and
parallel Spitzer resistivity, there results

tE �
2.7 3 1014

fGZeff lnL
a2b2.5

u �I�N�1.5I1.5. (10)

For simplicity profiles of density, temperature and resistiv-
ity are here taken to be constant in space. The factor fG

stems from the screw-shaped current path in the RFP, and
can be approximated by fG � 2.2�5 1 6Q2���10 1 Q2�
[13]. It is sometimes assumed that both bu (as determined
by force balance alone) and I�N remain constant with in-
creasing current. This “standard” RFP scaling thus yields
tE ~ I1.5 and T ~ I .

The energy confinement time, obtained from regression
analysis of our simulation data, can be expressed in experi-
mental variables (assuming lnL � 15);

tE � 0.019a2.0m0.0Z21.0
eff T �0�2.6I21.1. (11)

After inserting T �0� from Eq. (7), there results

tE � 1.9 3 1025a1.4m0.29Z20.42
eff I0.34. (12)

The scaling of Eq. (12) with current is much weaker than
that of the standard case, primarily due to the degradation
of bu with current. It is, however, close to measured data
at the Extrap T2, RFX, and MST experiments.

Equations (7), (8), and (12) are our principal results.
In an extended paper, where we will also include the de-
pendence on I�N and Q, comparisons with individual ex-
periments will be made. Here we briefly remark on the
implications of these results for the fusion potential of
the conventional RFP. Inserting parameter values rele-
vant for a compact RFP reactor (a � 0.6 m, I � 18 MA),
Eq. (12) predicts tE � 0.003 s. This value for the con-
finement time is well below the design value of 0.2 s
assumed in the TITAN reactor study [14] for the same
parameters. Further, Eq. (7) implies an on-axis tempera-
ture of only about 1.1 keV as compared to the TITAN
design value of 10 keV, contradicting the assumption of
Ohmic heating to ignition. However, the TITAN study
used Q � 1.5, as compared to our value of 1.8. This may
yield somewhat better confinement due to a less stochastic
plasma core. Care must also be taken when extrapolating
to TITAN Lundquist numbers of 109, by far exceeding the
range employed in our study.

For comparison with analytically and experimentally ob-
tained scaling laws, we use Eq. (6) to eliminate T �0� from
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Eq. (11). We find (with I�N � 2.8 3 10214 A m)

tE � 1.0 3 1027m0.05Z20.90
eff b2.4

u a1.9I1.3. (13)

Connor-Taylor scaling [15], being based on constant-bu

resistive g-mode fluctuation theory, predicts the depen-
dence tE ~ a2I1.5�I�N�1.5 [which is the same as the
standard dependence given in Eq. (10)]. A fit to an
international RFP database [16], using the form tE �
c�a2I1.5�I�N�1.5	p , in units of s, MA, 1020 m21, and
m, results in the parameter values c � 6 3 1023 and
p � 0.87. Adjusting the present dependence on this form,
we find c � 1.9b

2.4
u a0.16m0.05Z20.90

eff and p � 0.87. Our
expression for c has a strong dependence on bu . Since
bu certainly is not independent of current, the forms for
tE suggested in [16] are therefore of questionable utility
(see also [17]).

In conclusion, we have determined for the first time
theoretical limits for RFP confinement behavior. Our re-
sults indicate significant degradation from the standard
picture of RFP confinement, but are in good agreement
with experimental results. The relatively high Lundquist
numbers, comparable to those experimentally obtained, are
achieved by using a fine radial grid and by careful choice of
viscosity. (In an extended paper we will show that the exact
choice of viscosity has little impact on the physical results
such as magnetic field fluctuation levels or confinement.)
The scalings are obtained by recognizing that there are no
more than two governing parameters for fixed I�N . In our
study an optimum conducting wall case was assumed; fur-
ther Q � 1.8, R�a � 1.25, and density is constant. We
believe that none of these restrictions have any strong in-
fluence on our conclusions.

Several effects were neglected in these simulations. A
resistive wall and field errors would introduce new unstable
modes, impurities would cause line radiation, fluctuations
in the presence of a density gradient would cause particle
transport [18,19], and hot electrons may enhance core en-
ergy losses. These would all lead to a more pessimistic
picture than the one presented here.

Finally, our results emphasize the importance of experi-
mentally demonstrating control of the RFP current pro-
file in order to minimize the dynamo fluctuations, re-
duce the corresponding thermal losses, and improve energy
confinement.
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