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Minimizing Boundary Reflections in Coupled-Domain Simulations
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We propose a time-dependent boundary condition coupling an atomistic simulation system to linear
surroundings such that reflection of elastic waves across the boundary is minimized. Interdomain interac-
tions expressed in terms of memory kernel functions within linear-response theory are treated in a natural
dynamical manner, albeit numerically. The approach is shown to give significantly reduced phonon re-
flections at the domain boundaries relative to existing coupling methods. In addition, we demonstrate
that the framework is also effective in the context of static relaxation of displacement fields associated
with embedded inhomogeneities.

PACS numbers: 63.20.Mt, 02.70.Ns, 46.15.–x
A general problem in the domain decomposition ap-
proach to modeling discrete systems with localized inho-
mogeneities (defects) is the spurious reflection of elastic
waves due to a change in system description across the do-
main boundary. Such effects are seen in, for example, the
atomistic modeling of dislocation motion [1], crack propa-
gation [2–5], and energetic particle-solid collisions [6,7],
while they are also of concern in the recent development
of hybrid techniques involving multiple length and/or time
scales [8–11]. In order to minimize such reflections, a
number of coupling schemes or boundary conditions have
been proposed, such as ad hoc viscous damping [3–5] and
the more physically motivated use of an approximate de-
scription of coupling across a domain boundary [7]. Until
now, however, none can claim to be free from empiricism
and the attendant limitation on general applicability.

In this Letter we describe a method for coupling two
crystalline domains, a primary region P and an outer do-
main Q, for which the P-Q and Q-Q interactions are lin-
ear. In the governing equation of motion for the atoms in
P, the influence of domain Q is represented in terms of a
set of response functions which describe the response of
medium Q to disturbances in domain P. These functions
are evaluated systematically and without uncontrollable
approximations by performing a series of test simulations
in domain Q. In this fashion, a numerical boundary con-
dition is derived for the simulation in P, eliminating the
infinite number of degrees of freedom of the surrounding
region Q from the description, while preserving the correct
dynamics in region P. We demonstrate the effectiveness
of this method by determining the phonon reflectivity in
two model systems, a linear chain and a square lattice, for
which previous results are available for comparison. In ad-
dition, we demonstrate that the framework is also useful in
the context of static relaxation by applying the technique
to determine the static displacement field associated with
a dislocation configuration embedded in domain P.

Consider a crystalline system P-Q in which the region
of interest P may contain inhomogeneities, while medium
Q consists of defect-free material. For sufficiently large
0031-9007�00�85(15)�3213(4)$15.00
P and moderate temperatures, it is appropriate to describe
the P-Q and Q-Q interactions as harmonic, and one can
obtain an equation for P from which the explicit degrees
of freedom associated with medium Q have been replaced
by an implicit formulation [12,13]:
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Here, xi represent the N degrees of freedom in P, V �
V ��xj�� is the potential energy of the entire system with
the atoms in Q fixed at their equilibrium positions, bij�t�
denote the N2 elements of the time-dependent memory
kernel matrix b�t�, and Ri�t� is a linear function of the
initial displacements and velocities in domain Q. Equa-
tion (1) is generally referred to as the generalized Langevin
equation [12–14], in which the functions bij�t� describe
the response of medium Q to disturbances in region P in
the form of P-to-P correlation. The Ri�t� represent the
effects on P due to any initial disturbance in Q and are
usually treated as random forces to describe the effects of
statistical fluctuations in region Q at a nonzero tempera-
ture [7,12,13].

Suppose the system is at equilibrium with the atoms in
P and Q all at rest. At t � 0, one of the atoms in P
is given a displacement e, after which all atoms in P are
frozen in their initial positions:

xj�t� � xj�0� � edjk . (2)

Allowing the atoms in Q to relax after t � 0, the time-
dependent forces acting on the atoms in P are given by the
right-hand side of Eq. (1),

Fi�t� � 2
≠V
≠xi

1 ebik�t� , (3)

where the convolution terms and the Ri�t� have vanished
due to Eq. (2) and the fact that region Q is initially in
equilibrium, respectively.
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The first term in Eq. (3) represents the static force ex-
erted on xi if all atoms in Q were to be held fixed in their
initial positions (i.e., fixed boundary conditions), while
the second term is the time-dependent component arising
from the motion of the Q atoms after t � 0. It is clear
that the response functions bik�t� completely define the
P-Q coupling as a space-time dependent P-to-P correla-
tion through medium Q.

Equations (2) and (3) constitute the basis for an al-
gorithm to compute bik�t� from a series of test simula-
tions. Each simulation starts with the perturbation of an
xk according to Eq. (2), followed by a molecular dynam-
ics (MD) run that produces the subsequent response of the
atoms in Q under the constraint of fixed positions in P.
During each run, the forces Fi�t� are recorded as a function
of time, giving directly the N response functions bik�t�,
i � 1 . . . N , after subtraction of the static force compo-
nents 2≠V�≠xi .

In practice, the test simulations are performed over a fi-
nite time interval, so that the bij�t� are determined only
within a time interval �0, tc�, with tc being a cutoff time.
Given the typical behavior of the matrix elements as a func-
tion of time, shown in Fig. 1, it is reasonable to disregard
any further variations in the response functions for t . tc,
and assume that they remain constant at their cutoff values
bij�tc�, provided that tc is sufficiently large. To be inter-
nally consistent, temporal truncation should be accompa-
nied by a spatial cutoff. This means one should neglect all
matrix elements that involve atoms separated by a distance
larger than a cutoff radius rc � ctc, where c is the sound
velocity in Q. In many cases, the number of relevant re-
sponse functions can be further reduced if the interatomic
potential model is finite ranged and the number of degrees
of freedom in P that interact directly with those in Q is
considerably smaller than N .

As a first demonstration of the effectiveness of the re-
sponse function boundary condition we are proposing, we
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FIG. 1. Typical behavior of the memory kernel matrix ele-
ments as a function of time (full line). In practice, the response
functions are determined within a time interval �0, tc�, with tc
being a cutoff time. For t . tc they are assumed to remain con-
stant at their cutoff values bij�tc� (dashed line).
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apply Eq. (1) to simulate the dynamics in a small section
of a linear chain of identical harmonic oscillators with
nearest-neighbor interactions. The masses, spring con-
stants, and equilibrium distances are set equal to unity.
Fifty oscillators are assigned to a region P which is brack-
eted by two semi-infinite chains Q1 and Q2. Because of
the configurational symmetry, there is only one relevant
memory kernel in this problem, describing the response
of a semi-infinite chain to a displacement in the corre-
sponding boundary oscillator. The test simulation, carried
out using a time step Dt � 0.1, is truncated after a cutoff
time tc � 50, when the force fluctuations in the response
function have decayed to within approximately 0.15% of
the asymptotic value. The numerically computed response
function is essentially indistinguishable from the analyti-
cal solution [15].

Using the numerically computed response function in
(1), an MD simulation is performed to study the time evo-
lution in P after introducing initial displacements xi�0�
according to the wave packet

xi�0� � cos�k�X0
i 2 b�� exp�2�X0

i 2 b�2�2s2� .

Here, X0
i denotes the equilibrium position of oscillator i

and X � b is the position in the center of domain P. As
a reference, the motion is also monitored using a full MD
simulation in which the oscillators in Q1 and Q2 are treated
explicitly and no boundary is present. As a measure of
the effectiveness of our response function approach, we
evaluate the wave reflection at the boundaries between do-
main P and the chains Q1 and Q2. The reflectivity R
is defined as the maximum difference between the instan-
taneous energies stored in region P during the response
function simulation and the full MD run, divided by the
initial energy in region P.

In Fig. 2, R is plotted as a function of wave vector k
with s � 5. The results show that the response function
approach provides an excellent description of the dynamics

FIG. 2. Phonon reflectivity as a function of wave vector k for
a one-dimensional chain of harmonic oscillators. Inset shows
reflectivities associated with the CGMD method [10] for the
same problem.
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in P, featuring a reflectivity below 1023 for approximately
80% of the Brillouin zone, and of the order of only 1021

for k values at the zone boundary. For comparison, the
reflectivity results obtained in a coarse-grained molecular
dynamics (CGMD) simulation for the same system [10]
are shown in the inset. It can be seen that the coupling
method in the latter work is much less effective, as only
the lower 5% of the Brillouin zone is treated correctly
while the components with higher values of k are totally
reflected due to the fact that such modes cannot exist in
the coarse-grained region.

As a second demonstration, we study wave reflectivity in
a two-dimensional version of the previous system, a square
lattice of harmonic oscillators with the same specifications.
The oscillators are allowed to move only in the direction
perpendicular to the plane of the lattice. The primary do-
main P is defined as a square region containing 3600 lat-
tice sites. Given the symmetry of the configuration and
the short range of the interactions, the total number of test
simulations required to fully specify the memory kernel
matrix is 30. Each simulation is carried out using a time
step Dt � 0.1 and is truncated after a cutoff time tc �
50. Furthermore, an additional spatial truncation is intro-
duced; all matrix elements that involve oscillators sepa-
rated by a distance larger than a cutoff radius rc � 30 are
disregarded.

In order to compare to existing reflectivity results [7],
we study the boundary reflectivity as a function of the
width of the wave packets. The initial displacements in P
are set according to a symmetric two-dimensional Gauss-
ian function of width s, centered in the middle of domain
P. Following the procedure described previously, the re-
flectivity R is evaluated by comparing the energies stored
in domain P during the full MD run and the response func-
tion simulation. Figure 3 shows the resulting values of R
as a function of the width s. Our method provides an ac-
curate description of the response of medium Q, showing

FIG. 3. Reflectivity on a two-dimensional square harmonic lat-
tice as a function of the width s of initial Gaussian displace-
ments. Inset shows reflectivity results reported in Ref. [7] using
another reflection reduction technique for similar Gaussian dis-
placements in a three-dimensional fcc lattice.
reflectivity between 1023 and 1025 across a wide range of
values for s. The inset shows reported reflectivity results
for similar initial Gaussian displacements in a three-
dimensional study using another reflection reduction
method [7]; the different curves correspond to different
values of the empirical damping coefficient in this scheme.
Even though these results and ours do not refer to identical
simulations, nonetheless, we believe it is significant that
the reflectivity given by our treatment is some 2 orders of
magnitude lower. Moreover, the reflectivity of our method
can be systematically reduced even further by increasing
the cutoff values for tc and rc.

In addition to minimizing boundary reflection, the re-
sponse function framework is also useful in the context of
static relaxation of displacement fields associated with a
defect embedded in domain P. As a demonstration, we in-
troduce a screw dislocation dipole at the center of the previ-
ously described two-dimensional square harmonic lattice.
The dipole is created by fixing the displacements of a row
of atoms in P at 10.5, and those in the adjacent row at

FIG. 4. (a) Displacements in two-dimensional square har-
monic lattice containing a screw dislocation dipole in primary
region P. (b) Displacement fields of oscillators along the
four edges of the boundary a-b-c-d-a; results obtained using
conjugate-gradient minimization (full line) and response func-
tion relaxation (dotted line).
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20.5, as shown in Fig. 4(a). To obtain the reference static
displacement fields for this configuration, we first perform
a conjugate-gradient (CG) energy minimization procedure
on the entire system employing a sufficiently large Q re-
gion to achieve satisfactory convergence.

In order to obtain the relaxed displacement field using
the response function method, one may directly integrate
the equations of motion (1) until all kinetic energy has
dissipated. Using the response functions and cutoff pa-
rameters determined in the second application, the static
displacement field is thus obtained after about 105 MD
steps. However, since we are interested only in the static
response of medium Q in this application, the same result
may be obtained more effectively by neglecting the spe-
cific time dependence of the response functions and using
only their long-time asymptotic values. In addition, one
may also disregard the force components that arise from
a particular initial condition. In this manner, the same re-
laxed displacement fields can be obtained by relaxing the
static forces

Fi��xj�� � 2
≠V
≠xi

1

NX
j�1

bij�tc�xj , (4)

using the cutoff values bij�tc� for the asymptotic values of
the response functions.

Figure 4(b) shows a comparison between the results ob-
tained with the reference CG procedure (full line) and our
response function approach (dotted line). The curves de-
scribe the relaxed displacement fields as a function of the
oscillator position along the four edges a-b-c-d-a of the
P-Q boundary, as indicated in Fig. 4(a). The agreement is
seen to be satisfactory, with small discrepancies originat-
ing from the errors introduced by the temporal and spatial
truncations of the response functions. These errors can be
systematically reduced by increasing the values of the cut-
off parameters tc and rc.

In summary, we have shown how the response of a linear
medium surrounding an atomistic simulation system can be
treated in a systematic and numerically tractable manner
requiring no assumptions beyond linear response theory.
3216
The method is found to be optimal in reducing artificial
boundary reflections in dynamical simulations, as well as
effective in the context of the static relaxation of displace-
ment fields associated with embedded inhomogeneities.
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