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Dynamics of Electron-Plasma Vortex in Background Vorticity Distribution
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Dynamics of a point vortex in interaction with a broad profile of background vorticity is studied
experimentally by using an electron plasma. The observed motion of the vortex compares favorably with
a recently proposed theoretical model [D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83, 2191
(1999)]. Perturbations in the background distribution in the wake of the spiral orbit of the vortex amount
to several tens of percent and are considered to be a major reason for deviations of the observation from

the linear theoretical model.
PACS numbers: 52.25.Wz, 47.32.Cc

The macroscopic dynamics in an electron plasma,
trapped axially by an electrostatic potential and radially
by a strong homogeneous magnetic field, is isomorphic
to that of two-dimensional (2D) inviscid fluid, as long
as the axial bouncing motion of the electrons is much
faster than the transverse E X B drift motion of their
guiding centers [1-3]. In this analogy, the 2D electron
fluid is incompressible and the vorticity  is related to the
plasma density n and the magnetic field strength By by
{ = en/e€pBy, while the streamlines conform to the equi-
potential surfaces.

Many features of vortex dynamics in 2D Euler fluids
have been examined experimentally by using electron plas-
mas confined in Malmberg traps [4]. Mutual interaction of
vortex patches is among extensively studied topics [5—7].
It has been pointed out recently that a background vorticity
plays an essential role in the relaxation of 2D turbulence
toward an ordered state composed of eminent discrete vor-
tices [8] and in the accelerated merging of remotely sepa-
rated vortices [9]. In this Letter, we study 2D dynamics
of a single point vortex interacting with a large vortex of
extended distribution or a background vorticity as an ele-
mentary process of the above observations. This configu-
ration is relevant also as a model of an atmospheric vortex
moving in a rotating planet [10—12]. A special emphasis
is made on comparison with a recently proposed theoreti-
cal model [13] because it solely accounts for most of the
observations in this experimental study.

In the experiment the point vortex is a string of N,
electrons with the half-maximum diameter of 0.5 mm and
length L = 235 = 5 mm confined radially by a homoge-
neous magnetic field of strength By = 0.048 T at maxi-
mum. To reduce the spatial variation of the axial length
of the strings, we form a Malmberg-type potential dis-
tribution by grounding the axially aligned 11 conducting
cylinders with 64 mm inner diameter and by negatively
biasing the end-plug cylinders as shown in Fig. 1 [4].
The total circulation of the point vortex is evaluated as
I'y = eN,/egByL, where € is the dielectric constant in
vacuum. We generate the vortex strings by injecting elec-
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trons for =5 wus from a selected element in the array of
19 impregnated-tungsten cathodes and trap them by gated
biasing of the end-plug [9,14]. The current and energy of
electrons emitted from each cathode can be varied inde-
pendently as well as the timing of the emission.

We establish background vorticity distributions, as
shown in Fig. 2(a), by repeating a few hundred times the
cycle of injection-trapping-relaxation of electron strings
and by letting the mixed state of the plasma relax further
for additional 1 s. Through appropriate adjustment of the
cathode selection and the stacking sequence we produce
different shapes of convex distribution of the background
vorticity that by itself remains unchanged for additional
0.1 s. From this profile a concave distribution is created
by partially dumping the trapped electrons axially through
the injection-side end cylinder. A point vortex is injected
immediately after this process.

The measurements are made by dumping the whole
electrons through the end cylinder on the other side of
the cathode onto a phosphor screen that is biased up to
4.5 kV from the machine ground. The conducting surface
of the screen with diameter 50 mm also serves as an elec-
tron collector to monitor the total number of electrons N.
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FIG. 1. Schematic configuration of electron emitter array and
the plasma trap. The cathodes are labeled A to S, to which the
point vortices are referred to as sources.

© 2000 The American Physical Society 3173



VOLUME 85, NUMBER 15

PHYSICAL REVIEW LETTERS

9 OCTOBER 2000

=
o
2
L7
c
[}
a
Q L
£ 9% 5 10 15
= Radius (mm)
e (b) . —
Eqa ' Tor o0 -
o [ i 9@ .
£ 8| °; | =
5 op e ¥otomeog
a A% 2090 : :

4L O A ¥ ]
— m}
8
S0 ’
c 10 30 50 100

Time (us)

FIG. 2. (a) The radial profile of the line-integrated density
distribution of the background electrons. N,/10% = 3.5 (A),
1.8 (), and 8.0 (@). (b) The radial distance of a point vortex
F (Np = 1.2 X 107) from the background center is plotted as
a function of time, for radially decreasing profiles (A, ), for
a hollow profile (@), and for the vacuum case (O). The curves
are calculated from Eq. (1) starting from the position giving the
best fit to the initial-phase orbits.

The luminosity distribution on the screen is detected with
a charge-coupled-device (CCD) camera with 512 X 512
pixels and recorded in a computer for numerical analyses.
We have confirmed a good linear relationship between N
and the luminosity integrated over the screen.

Using the relationship we obtain the transverse distri-
bution of the line density of the plasma integrated along
the magnetic field, and determine an analytical distribu-
tion function best fitting to the observed luminosity distri-
bution. For convenience of numerical analyses we employ
a superposition of exp[ f(r)] as a fitting function, where
f(r) is a polynomial of the radius r. The dots in Fig. 2(a)
exhibit the azimuthally averaged line density of the back-
ground plasma as determined from the luminosity distribu-
tion, while the curves represent the best-fitting functions.
The electron temperature is about 1 eV.

The orbit of a point vortex injected at + = 10 us from
the cathode F is plotted in Fig. 2(b) as a function of time
for different profiles of the background vorticity. In vac-
uum (O) the point vortex continues orbiting around the
machine axis [9]. When the background distribution de-
creases radially (A and [J), the vortex moves toward the
center of the background vorticity. When the vortex is
injected inside the ridge of a concave distribution (@), it
follows the ridge that moves and asymmetrically deforms
due to diocotron instability associated with the background
distribution [1-3] and tends to settle down on the ridge. A
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noticeable overshoot of the vortex orbit is attributed to the
motion of the background vortex. When the point vortex
(from L) is placed outside the ridge, it moves inward and
shows a similar orbit. In either case the point vortex does
not cross the ridge. These observations are qualitatively
consistent with a theoretical model proposed recently by
Schecter and Dubin [13], stating that a point vortex moves
up the hill of background vortex. The orbits expected
from the model are plotted in solid (for A), dotted (for
), dashed (for @), and dash-dotted (for O) lines.

According to a slab model by Schecter and Dubin [13],
the radial velocity of a point vortex in a background vor-
ticity distribution ¢} is given by

ﬂ = & dgy/dr ln<ﬂ> arctan<@> (D)
dt 27 |A| [ 2 )’

where A = —r dQ,(r)/dr is the shear relative to the lo-
cal rigid rotation ,(r) of the background vortex, [ =
(T, /27r]Al)!/2 is the radius of the stagnation zone around
the point vortex with a circulation of I',,, and ¢ is a number
of order 1. In the following we put the logarithmic factor
as 1 to avoid an unphysical lower limit at r = [/c [13].
Figure 3 shows the observed motion of a point vortex
with different I", starting from the arrow-marked radius in
the same initial background profile as shown in the inset.
The vortex is injected at ¢+ = 10 us, and starts to move
freely on disconnection from the cathode at ¢+ = 15 us as
indicated by an arrow. The latter timing is determined as a
stepwise reduction of the charge dumped on the collecter
screen. The observation shows that the radial velocity of
the vortex F increases with I', « Ny = (1.6-17) X 10°
as expected from Eq. (1). By introducing experimental
parameters into Eq. (1), we calculate the vortex orbits as
shown in Fig. 3. It indicates that on the whole the the-
ory can describe the observed orbits even quantitatively.
Though Eq. (1) does not lead to oscillatory orbits, they
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FIG. 3. Radial distance of a point vortex F from the back-

ground center is plotted against time after injection at t =
10 ws. Np/10° = 1.6 (A), 4.4 (O), 8.7 (O), 17 (@). The
inset shows the common profile of the initial background in unit
of 10" m~3 with N, = 7.8 X 107. The curves attached to the
dots denote the orbits calculated from Eq. (1).
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FIG. 4. The observed time 7., is plotted against the theoreti-
cal time Tmoqer. Here N,/10% = 0.78 (), 1.8 (<), 3.5 (O),
7.0 (O). The open (closed) symbols denote the data with the
vortex F (L) with different values of Np(N.)/10® = 1.6—17.
For oscillatory orbits the 10% points are determined by extrapo-
lating the initial track.

are a natural consequence of the background reaction in a
Euler fluid as discussed later.

In Fig. 4 we directly compare the observations with
predictions of the model by plotting the times, 7cy, and
Tmodel, Tequired for the vortex to move from the position
at 90% of the initial radial distance to the 10% point to-
ward the center of the background. The latter point is
determined by smoothly extrapolating the initial trajec-
tory before the first bounce to remain in the framework
of the theory. The plots are collected from data obtained
with different experimental parameters including circula-
tion strength (e« N,,, N},), and initial location of point vor-
tices (F and L) and different profiles of the background
vorticity [ n,(r)] with d,(r)/dr < 0. The almost lin-
ear relation 7exp = 2Tmodel, as denoted by the solid line,
indicates that the model equation (1) agrees quantitatively

Total Vorticity Distribution
Ousec 10
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FIG. 5.
panels show the perturbed part.

with experiments. The deviations within a factor of 2 may
be reduced by properly treating the logarithmic factor in
Eq. (1) or by considering nonlinear effects associated with
large 8¢} as mentioned below.

Figure 5 shows frames of the CCD images of the vor-
ticity distribution at different times. Here a point vortex
F with N = 1.7 X 107 is injected at + = 0 moves into
the background vortex with N, = 3.5 X 108. The upper
panels display the total vorticity distribution at ¢ = 0, 10,
12, 18, and 26 us, respectively. The darkness is propor-
tional to the vorticity except for saturated images of the
point vortex. One can observe that a spiral streak forms
behind the point vortex. Such a wake structure has been
observed also in the vortex-in-cell simulation [13].

The lower panels show the perturbed part 6¢; of the
background vorticity, obtained by subtracting the initial
background image from the total image. It is observed
that, along the streak, the background vorticity decreases
on the inner side and increases on the outer side, namely
84(r — 6r) <0< 84(r + 6r). In other words, the
vorticity in the background is transferred downhill as the
point vortex climbs up inward. Schecter and Dubin dis-
cussed this process in terms of the conservation of the total
canonical angular momentum. In terms of plasma physics,
however, we can draw a more concrete picture of the vor-
tex dynamics.

As in Ref. [13] we take the frame rotating at the local
angular velocity of the background plasma, with a local
coordinate (x,y) system centered on the vortex as shown
in Fig. 6(a). If dn,(r)/dy < 0, the stream lines coming
from the right below carry more electrons to the turning
point on the positive x axis than those from the left above.
The imbalance of the charge density produces an electric
field pointing toward positive x, and drives the point vor-
tex by E X B drift toward negative y. The associated
transport of the background electrons along the stream-
lines causes excess density in the region right above of
the point vortex and depletion left below. This mechanism
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2D distribution of the background vorticity at different times. The upper panels exhibit the total vorticity, while the lower
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FIG. 6. (a) Streamlines of background electrons in the moving
frame centered on a point vortex that is driven downward along
the gradient of background density. (b) The perturbed vorticity
distribution (3) for A = 0. (c) The perturbed vorticity distribu-
tion (2) for A # 0.

creates the perturbed density distribution as observed in
Fig. 5.

On the basis of the above discussion, we learn the physi-
cal meaning of Eq. 4 in Ref. [13], that may be rewritten as

_ Iy dgpo/dr

0dp = — In[1 + Atsinf(Atsind — 2cosf)],
47 Ap sinf

2)

where p = (x2 + y2)'/2, and 6 = arctan(y/x). The
physical picture given in Fig. 6(a) corresponds to the limit
of A = 0, where

_ Tydgpo/dr tcosh
27 p

oly = 3)

Equation (3) represents a dipole configuration of vorticity
as shown in Fig. 6(b) that produces velocity field orienting
to negative y in the same way as in Fig. 6(a). Note that the
induced space charge density in Fig. 6(a) is equivalent to
the vorticity distribution in Fig. 6(b). It is also noteworthy
that 6, increases linearly in time. It is related to the
observations given in Fig. 3 that in the initial phase (small
|At]) the radial velocity of the vortex increases in time. If
A # 0, Eq. (2) tells that the axis of the dipole structure tilts
to the direction § = arctan(2/At), as drawn in Fig. 6(c).
The tilting limits a further increase of the radial velocity
and reduces the azimuthal velocity in the laboratory frame.

The linear theory does not tell how 6}, evolves to form
a spiral structure in ¢} as the vortex changes its location in
the laboratory frame. A quantitative analysis of the images
as shown in Fig. 5 indicates that |6ny/ny| = [6&y/ 4|
amounts to several tens of percent in the wake of the vortex
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as I'y, « N, increases. The long-lasting wake itself is asso-
ciated with the conservation of vorticity in the Euler fluid,
but the process determining the modulation level remains
as an important problem to be explored theoretically. Ob-
servations as in Fig. 5 also indicate that the spiral structure
rotates differentially with the vortex. The rotation of the
modulated background generates an oscillating azimuthal
electric field at the position of the vortex and drives it ra-
dially in and out. The oscillatory trajectories of a vortex
shown in Fig. 3 are a manifestation of this process. Our
experimental study indicates the importance of extending
the model to the nonlinear stage and to consideration of
nonlocal effects in time and space.

In summary, we have experimentally studied dynamics
of a point vortex in interaction with a background vorticity
of various profiles, and compared the observations with
prediction of a theoretical model [13]. The experiment
has confirmed essential aspects of the model, but it also
indicates several aspects to be studied further beyond the
linear analysis as employed for constructing the theoretical
model.
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