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Chaos Healing by Separatrix Disappearance and Quasisingle Helicity States
of the Reversed Field Pinch
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The resilience to chaotic perturbations of one-parameter one-degree-of-freedom Hamiltonian dynamics
is shown to increase when its corresponding separatrix vanishes due to a saddle-node bifurcation. This is
first highlighted for the magnetic chaos related to quasisingle helicity (QSH) states of the reversed field
pinch. It provides a rationale for the confinement improvement of helical structures experimentally found
for QSH plasmas; such a feature would not be expected from the classical resonance overlap picture as
the separatrix disappearance occurs when the amplitude of the dominant mode increases.
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This paper deals with two different, but connected
issues: (i) the increase of the resilience to chaotic perturba-
tions of a one-parameter one-degree-of-freedom Hamilto-
nian dynamics when its corresponding separatrix vanishes
due to a saddle-node bifurcation, and (ii) a rationale for the
confinement improvement experimentally found for helical
domains in reversed field pinches in a quasisingle helicity
(QSH) state [1]. Accordingly, this Letter is written so as to
provide new results of interest for studies on magnetically
confined plasmas and Hamiltonian chaos.

The reversed field pinch (RFP) is a toroidal magnetic
confinement device similar to the tokamak but with a
toroidal field, Bf, which reverses at the plasma edge, and
which is of the same order of magnitude as the poloidal
one, Bu . Let r measure the distance to the secondary
magnetic axis of the torus, and R be its major radius.
As the safety factor q � rBf�RBu is less than one, the
plasma may easily become unstable to (resistive) kink
modes. When such a mode resonates with the axisymmet-
ric component of the magnetic field, it yields a magnetic
island (if its amplitude is not too high, as will be shown
later). In most experimental conditions, several such
modes are simultaneously present with similar ampli-
tudes of the order of a few percent of the axisymmetric
magnetic field; such plasma states are dubbed multiple
helicity (MH) states. Owing to the close mode spacing,
this produces magnetic chaos in the plasma core [2] by
resonance overlap [3]. Soft x-ray (SXR) tomographic
measurements of MH states performed in RFX, the
largest present RFP, show a rather axisymmetric thermal
structure with its hottest point at the secondary axis of the
plasma annulus [1].

In some experimental conditions, these tomographic
measurements show the presence of a well defined thermal
structure with m � 1 poloidal symmetry [1]. These mea-
surements correlate with external magnetic measurements
which show a corresponding dominant mode; such plasma
states are dubbed QSH states. However, the amplitudes of
the nondominant magnetic modes stay often of the same
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order of magnitude as in the MH state, and the simple
resonance overlap picture predicts the island of the domi-
nant mode to be chaotic, which is not compatible with
the bright m � 1 structures seen tomographically. This
Letter provides a possible explanation to this apparently
paradoxical situation, based on the absence of a magnetic
separatrix for the dominant m � 1 mode.

Numerical simulations of the RFP by 3D resistive
magnetohydrodynamics codes also display MH and QSH
states, and indicate the existence of a bifurcation between
these states ruled by dissipation [4–8]. The 2D simula-
tions of pure single helicity (SH) states show the existence
of two topologies for the corresponding magnetic surfaces:
with or without a magnetic separatrix, i.e., partially or
fully reconnected magnetic field [9–12]. Figure 1 shows
the typical poloidal section of the magnetic surfaces
related to these two topologies. Figure 1(a) displays a
large magnetic island which repels the magnetic axis
existing in the unperturbed axisymmetric configuration.
For a low amplitude of the helical magnetic mode, the
O and X points of the island (points O’ and X of the
figure) lie close to the unperturbed circular resonant
magnetic surface. In Fig. 1(b) there is no separatrix, but a
helically distorted magnetic axis. The same two magnetic
topologies are present in numerical simulations of the
m � 1 mode of the tokamak [13].

The QSH states of the RFP can be described by adopt-
ing the classical approximation of the plasma annulus by
a straight cylinder. We use the usual cylindrical coordi-
nates �r , u, z� and we follow the description of the mag-
netic field presented in [6]. The vector potential may
be written as A � c=z 1 F=u with the gauge condi-
tion Ar � 0, where c and F are the poloidal and toroidal
fluxes, respectively. Then the magnetic field is of the form
B � =c 3 =z 1 =F 3 =u. In the following we will
be interested in the perturbation of a SH state where all
quantities depend only on the two variables r and the heli-
cal angle u � mu 1 kz (we take m � 1); k plays the role
of a toroidal mode number: k � 2n0�R where R is the
© 2000 The American Physical Society 3169
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FIG. 1. Poloidal section of the magnetic flux surfaces of a
single helicity plasma (a) with and (b) without a magnetic island.

major radius. By introducing the corresponding helical
flux x � mc 2 kF, B may be written

B � �=c 3 =u 2 =x 3 =u��k (1)

(this is also correct without the helical symmetry). If A
depends only on r and u, calculating B ? =x from this
equation one easily finds that B is orthogonal to =x , i.e.,
that x � const defines a magnetic surface. Therefore a
SH state corresponds to an integrable magnetic field.

A Hamiltonian description of magnetic field lines en-
ables the direct application of concepts and tools of Ham-
iltonian chaos to the magnetic field structure. Such a
description is possible since the equations defining these
lines can be cast as canonical equations of a Hamiltonian
if one component of the magnetic field does not vanish in
the domain of interest [14,15]. As Bu does not reverse in
the RFP, c is single valued with respect to r .

Therefore c , u, and u may be taken as independent
variables. It is easily checked from Eq. (1) that x�c, u, u�
is the required Hamiltonian [6], where c and u are
the conjugate variables, and u plays the role of time.
In the SH state x is independent of u, and is a one-
degree-of-freedom Hamiltonian; therefore, as expected
from the previous reasoning, it defines an integrable
dynamics.

The numerically obtained QSH states show the pres-
ence of a dominant mode with m � 1 and n � n0, but
other lower amplitude modes exist simultaneously [5,6,8].
Hence, chaos through resonance overlap [3] might happen.
When an individual resonant magnetic mode �m, n� with
a small amplitude is present, the corresponding resonant
magnetic surface, located at r � rm,n such that q�rm,n� �
m�n, is torn into a small magnetic island whose width can
be computed by a simple formula [3] valid in the tearing
approximation, which is frequently used for m � 1 modes
in RFP data analysis; the result of this calculation is here-
after termed small amplitude island width (SAIW).

Figure 2 displays the safety factor q�r� of the axisym-
metric part of the magnetic field of a QSH state with
n0 � 11 computed by the SpeCyl code [5], together with
horizontal bars showing the SAIW in r of a series of
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FIG. 2. q profile and magnetic islands width (shown by hori-
zontal bars) of different m � 1 modes.

m � 1 modes. We checked that the simple SAIW estimate
is equal, within 30%, to the effective island width, as mea-
sured by direct reconstruction of the magnetic surfaces,
except for the n � 8 which is overestimated by a factor
of 2. We see that the r domains of the bars have a strong
overlap. This suggests the existence of large scale chaos
everywhere in the width of the plasma. Figure 3(b) shows
the Poincaré surface of section of the magnetic field lines in
the plane �z, r� obtained by computing these lines from the
magnetic field of the same QSH state. Contrary to expec-
tation, the system appears to be rather ordered: magnetic
surfaces, or equivalently Kolmogorov-Arnold-Moser tori,
still exist, although some limited chaotic regions are also
present. In particular, the m � 1, n0 � 11 island struc-
ture of the dominant mode is clearly visible. Let dB be
the amplitude of its magnetic field. An even more coun-
terintuitive result is shown in Fig. 3(a) where the chaotic
behavior of the magnetic field lines corresponds to a mag-
netic field of a new QSH state obtained by keeping the
amplitude of all nondominant modes, but with a dominant
mode amplitude edB with e � 0.1. This corresponds to a
decrease of magnetic island overlap, whereas chaos in the
system increases.

We now show that the topological structure in phase
space related to the dominant mode plays a crucial role
in explaining the apparent paradox described above. Fig-
ure 1 displays the magnetic flux surfaces of the SH state
obtained from the previous two QSH states by filtering out
all modes except for the dominant one (m � 1, n0 � 11).
Figure 1(a) corresponds to e � 0.1 as in Fig. 3(a), while
e � 1 in Fig. 3(b) as in Fig. 3(b). While in case (a) there
are two O points with a separatrix in between which yields
a magnetic island, in case (b) there is only one O point
and no magnetic island. Hence increasing e from 0.1 to
1, the system undergoes a topological change related to a
saddle-node bifurcation (simultaneous bifurcation of an O
point and of an X point): the small lobe of the separatrix
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FIG. 3. Poincaré surface of section of magnetic field lines in
the equatorial plane (a) e � 0.1, (b) e � 1.

in Fig. 1(a) shrinks to zero; this creates a cusp on the ulti-
mate separatrix which then vanishes.

In order to explain why this bifurcation occurs when
increasing e, and to understand its impact on chaos, we
introduce a model for the helical flux

x��r , u� � x0�r� 1 ex1�r� cos�u� , (2)

where x0�r� � r2 2 ar4, and x1�r� � r�1 1 br2 2

cr4� with a, b, and c positive numbers. x0 and x1 are
the axisymmetric and first harmonics of the helical flux
function. For an appropriate choice of �a, b, c� these first
two components yield a good approximation of the full
Fourier series for the magnetic field of Fig. 3(b) where
e � 1, and x� � const corresponds to the curves in
Fig. 1.

The O and X points of Fig. 1 correspond to extrema of
x�, and are points where the magnetic field is purely helical
with the helicity of the chosen SH state; indeed, =u ? B �
2�≠x��≠r��r. The function x0�r� has a minimum at r �
0 and a maximum at r � rm � �2a�21�2 separated by an
inflection point at r � ri � �6a�21�2. For e small (case
of a tearing mode) one extremum of x is found at r � r1
close to r � 0 with u � p and two extrema are found
next to r � r1,11, and symmetrically with respect to r1,11,
at r � r2 . r1,11 . r1 with u � p and r � r3 . r2 with
u � 0. The analysis of the matrix of second derivatives
shows that the points with respective index 1, 2, and 3
are, respectively, O, X, and O points [points O, X, and O’
in Fig. 1(a)]. The first one corresponds to the kink of the
magnetic axis at r � 0 due to the finite value of e. The two
other ones correspond to the X and O points of the small
magnetic island due to the tearing of the magnetic surface
located at r � rs for e small. Their order in radial position
still holds for the e � 0.1 value of Fig. 1(a), but the island
is already broad, and the former r � 0 magnetic axis is
close to the X point. When e increases, r1 and r2 converge
toward ri and annihilate there for some critical value of e

(saddle-node bifurcation). The vanishing of the X point
corresponds to the disappearance of the related separatrix.
For e � 1 this already happened as shown in Fig. 1(b):
no magnetic island exists, the magnetic surfaces are bean-
shaped, a feature identical to that of the ideal kink; the
new magnetic axis is the former O point of the island
(the resonance is not removed). In numerical simulations
of the SH state of the RFP starting from a paramagnetic
pinch state to reach a fully reconnected magnetic field
[12], the magnetic surfaces are seen to go through states
with a separatrix before converging to a case without any.
A similar dynamics was obtained in a simulation of the
q � 1 resistive kink in tokamaks [13].

Now that the change in the structure of phase space
for the unperturbed motion is unveiled, the resilience of
the fully reconnected SH state to chaos can be simply
explained. Indeed, it is known that chaos develops in the
vicinity of the separatrices of the unperturbed system, as
a result of the homoclinic intersections [16] of the stable
and unstable manifolds of the X point which merge in the
unperturbed system. If a separatrix vanishes, so does the
seed for chaos generation. We now make more quantitative
this qualitative argument. To this end we use the formalism
introduced above, and define xH�c , u� as the Hamiltonian
for the SH field lines related to x��r , u�. We then go to the
action-angle variables �J , f� of this integrable system [6]
which yields the Hamiltonian H0�J�; a flux surface then
corresponds to J � const. When there is a separatrix, we
do this in all three domains defined by the separatrix, and
V�J� � ≠H0�≠J vanishes at Js, the corresponding value
of J. If the SH state is perturbed by another helicity with
m � 1 and n � n1 of amplitude h, an appropriate choice
of the origin of u enables one to write the corresponding
Hamiltonian in the action angle as the following Fourier
expansion

H�J, f, u� � H0�J� 1 h
X̀

l�1

Vl�J� cos�lf 2 au� , (3)

where a � 1 2 n1�n0. Since V vanishes at Js, the
lth term of the Fourier expansion is resonant for l large
enough, and we call it resonance l. As explained below,
the resonance overlap criterion (ROC) may be used for
Hamiltonian H. By using the universal expressions for
action and frequency close to a separatrix [17], it is readily
shown that the overlap parameter between resonance l
and resonance l 1 1 scales like �hlll�1�2, where l is
a positive parameter which depends on H0. Since l is
the unstable eigenvalue of the X point it is intrinsically
greater than one. As a result chaos exists for any small
positive value of h for l large enough. When h grows,
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chaos expands away from the unperturbed separatrix.
When the separatrix vanishes, V�J� no longer vanishes,
but has a positive minimum Vm at some J � Jm close
to Js. The previous resonance overlap for any small h

no longer holds. Chaos occurs close to J � Jm when h

is large enough to allow the overlap of resonances l 2 1
and l, where l is the integer part of a�Vm. Therefore
the disappearance of the separatrix implies a stronger
resilience of the SH state to chaotic perturbations.

The features of Fig. 3(b) question the validity of the
ROC. It is known that this criterion loses its validity when
the overlapping islands have sufficiently different ampli-
tudes or wavelengths [18]. Figure 2 shows that the domi-
nant island has a SAIW such that it would overlap with
neighboring islands even if they would have a vanishing
amplitude: under such conditions the criterion is meaning-
less. A way out of this difficulty consists in the use of
action-angle variables described above, which exhibits a
set of new resonances. The features of neighboring reso-
nances are similar enough, at least for large l’s, for the
ROC to be applicable [19].

The argument based on action-angle variables does not
depend on the details of the Hamiltonian system of interest.
It shows that the impact of separatrix disappearance on the
resilience to chaos is of general interest in Hamiltonian
dynamics. It is interesting to notice that the growth of
the amplitude of a given mode may produce a decrease
of magnetic chaos in the corresponding resonant region
even when the separatrix does not vanish. This is true for
the stochastic layer which substitutes the separatrix for a
small nonintegrable perturbation [19]. This is also true for
a larger perturbation due to a quasiadiabatic behavior of
the dynamics [20]. However, the absence of topological
change in the dynamics makes the decrease of chaos more
progressive.

We have shown that the resilience to chaos of a one-
parameter one-degree-of-freedom Hamiltonian dynamics
increases when its corresponding separatrix vanishes due
to a saddle-node bifurcation. This was illustrated by the
magnetic chaos related to QSH states of numerical simu-
lations of the RFP. The similarity of experimental and nu-
merical QSH spectra implies that the resonance overlap
picture is likely to predict the absence of thermal struc-
tures with m � 1 poloidal symmetry for QSH plasmas.
Indeed, for such plasmas of RFX where a large hot he-
lical structure is visible by SXR tomography, a prelimi-
nary application of the resonance overlap criterion to the
data of external magnetic measurements predicts extended
chaos where the helical structure is visible [21]. Chaos
healing by separatrix disappearance might be the clue to
this apparent paradox. The present development of inter-
nal measurements of magnetic field profiles will be impor-
tant to check the experimental states against this theoretical
picture.

The stronger resilience to chaos of a fully reconnected
m � 1 mode might also be important for the q � 1 mode
of the tokamak. Indeed, it was shown in Ref. [22] that
3172
pressure induced chaos at the border of the q � 1 island
of a tokamak may increase heat transport and prevent the
full Kadomtsev reconnection process occurring when the
central q value, q0 is low enough (of order 0.8). As our the-
ory shows that a fully reconnected q � 1 mode is more re-
silient to Hamiltonian chaos, if the mechanism of Ref. [22]
actually exists, one could expect transport at the inversion
radius of soft x rays (radius of the q � 1 mode) to de-
crease abruptly when q0 is increased from these low values
toward 1 (but still less than 1).

The authors are indebted to Y. Elskens and S. Ortolani
for useful comments on the manuscript and to F. Porcelli
for advising them about the q � 1 mode of the tokamak.
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