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Shot Noise in Chaotic Systems: “Classical” to Quantum Crossover
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This paper is devoted to study of the classical-to-quantum crossover of the shot noise in chaotic
systems. This crossover is determined by the ratio of the particle dwell time in the system, td , to the
characteristic time for diffraction tE � l21jlnh̄j, where l is the Lyapunov exponent. The shot noise
vanishes when tE ¿ td , while it reaches a universal value in the opposite limit. Thus, the Lyapunov
exponent of chaotic mesoscopic systems may be found by shot noise measurements.
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The shot noise in the current flowing through a system is
a random process associated with the nonequilibrium state
into which the system is driven by the applied voltage [1].
The zero-frequency power spectrum of the noise is given
by

S � 2
Z `

2`
dt0��I�t�I�t0�� 2 �I�2� � 2Fe�I� , (1)

where 2e is the charge of the electron, and �I� is the aver-
age current flowing through the system. In vacuum tubes,
the shot noise emerges from the Poisson distribution of the
transmission of uncorrelated electrons. The result, in this
case, is given by Schottky [2] formula (1), with F � 1.
However, in more general cases, the charge carriers are
correlated, for example due to Fermi statistics. These cor-
relations suppress the noise, compared to Schottky result,
by a factor known as the Fano factor, F. In diffusive
wires with noninteracting electrons [3,4] F � 1�3, while
in quantum dots [5], F � 1�4. These suppression factors
are universal in the sense that they are independent of the
details of the systems.

In a view of this universality, an intriguing feature of
these results is the absence of an explicit h̄ dependence
in F. This is despite the fact that the source of the shot
noise is quantum mechanical uncertainty. Indeed, it has
been shown by Beenakker and van Houten [6] that the shot
noise vanishes in the classical limit. The purpose of this
Letter is to characterize the quantum-classical crossover
of the shot noise in noninteracting mesoscopic systems.
It will be shown this crossover is governed by the ratio
of two time scales: the average dwell time, td , which is
the typical time the electron stays in the system, and the
Ehrenfest time, tE ~ jlogh̄j which is the time scale where
quantum effects set in.

A qualitative understanding of the quantum-classical
crossover of the shot noise for Fermions can be achieved
by examining the general formula [3,7] at zero frequency
and temperature: S � Tr	T �1 2 T �
e3V�2p h̄. Here V
is the applied voltage, and T is the transmission matrix.
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For a single channel, the factor T �1 2 T � represents the
variance of the probability of a particle to pass through the
channel. It vanishes both when this probability is unity
�T � 1� or when it is zero �T � 0�. Thus, the shot noise
of open or closed channels is zero because the incident
flux of Fermi particles, at zero temperature, is noiseless.
The only possible source of the noise is the probabilistic
nature of the transmission and reflection, which implies
T fi 1, 0.

Classical dynamics, however, is deterministic. A tra-
jectory of an incident particle can either pass through the
system (T � 1, if we loosely view the trajectory as a
channel), or be reflected back (T � 0). Therefore, the
shot noise vanishes in the classical limit. Yet, a quantum
particle can switch between trajectories, an event which
we term as diffraction [8]. Consequently, the wave packet
of the particle splits into two components: one passing
through the system and another which is reflected back
(see inset of Fig. 1). The transmission probability is now

FIG. 1. The classical-to-quantum crossover of the shot noise
in chaotic dots. The solid line shows the Fano factor (3) as a
function of the ratio between the dwell time of the particle in
the dot, td , and the Ehrenfest time (2).
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different from one or zero, and the shot noise is finite.
Thus the quantum-classical crossover of shot noise is de-
termined by the probability of the particle to: (a) split its
classical path by diffraction, and (b) that the resulting two
trajectories diverge during the dwell time of the particle in
the system.

Consider a chaotic system with smooth potential energy
characterized by a length scale a. If a is larger than the
particle wavelength, lF , the typical time for the trajectories
to diverge is the time which it takes for a minimal wave
packet to spread over a distance of order a. We picture
the initial electron wave packet as a collection of trajec-
tories separated by a distance lF (see Ref. [9] for similar
estimates for weak localization). The separation among
these trajectories after time t is dominated by the un-
stable nature of the classical dynamics. Namely, if r�0�
is the initial distance between a pair of trajectories, then
after time t the distance is of the order of r�t� � r�0�elt ,
where l is the Lyapunov exponent of the system. Thus,
setting r�tE� � a and r�0� � lF one obtains

tE �
1
l

ln

µ
a

lF

∂
. (2)

Notice that the Ehrenfest time, tE ~ jlnh̄j, diverges log-
arithmically when h̄ ! 0, while the average dwell time
of the particle, td , is essentially independent of h̄. Thus,
in the classical limit, the Ehrenfest time is always larger
than the average dwell time, tE ¿ td , and the shot noise
is zero. The universal results for the shot noise mentioned
above, implicitly, assume the system to be in the opposite
limit, td ¿ tE . In this regime the particle stays in the
sample long enough to experience diffraction, and as a re-
sult the shot noise is finite; see inset of Fig. 1.

So far, our discussion applies to any chaotic system. To
make it more specific, consider the shot noise of quantum
dots having a nonintegrable shape. Let us assume the
elastic relaxation time within the dot to be much shorter
than the Ehrenfest and dwell times, and the contacts with
the leads to have an equal large number of channels. Let
the leads be in thermal equilibrium, and the bias between
them be V . As we will show the zero-frequency correlator,
at zero temperature, is given by Eq. (1) with the Fano
factor

F �
1
4

G; G � exp

∑
2
tE
td

µ
1 2

l2

2l2td
1 . . .

∂∏
,

(3)

where l2 is of the order of l. The behavior of this Fano
factor is depicted in Fig. 1.

Before turning to the rigorous derivation of Eq. (3), we
discuss the physical meaning of this result. Factor F con-
sists of the quantum value, 1�4, multiplied by the probabil-
ity of the particle to diffract during the dwell time; see also
Ref. [9]. Indeed, for the chaotic dots the distribution of
the dwell time, t, is Poissonian, P�t� � e2t�td�td , where
td is the average escape time. Since only trajectories with
dwell times larger than tE contribute to the noise, their
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fraction out of the total number of trajectories is e2tE�td ,
and this is the first term in the exponent of Eq. (3). The
second contribution to the exponent takes into account the
fluctuations in the value of the Lyapunov exponent dl for
different trajectories, �dl2� � l2�t.

We turn, now, to the formal derivation of the above
results. We choose to work in units where h̄ � kB �
1. The dependence on these constants will be restored in
our final expressions. The derivation [10] is based on the
Keldysh formalism [11].

The matrix Green function of our system

G�z ; z 0� �

µ
GR�z ; z 0� GK �z ; z 0�
GZ�z ; z 0� GA�z ; z 0�

∂
; z � �r, t�

(4)

(R,A,K denote retarded, advanced, and Keldysh compo-
nents, respectively) satisfies the Schrödinger equation∑µ

i
≠

≠t
2 Ĥ

∂
1̂ 2 ŝxÂ ? Ĵ

∏
G � 1̂d�z 2 z 0� , (5)

where Ĥ is the Hamiltonian of the system, sxÂ�z � ? Ĵ is
a source term, sx is the first Pauli matrix in Keldysh space,
and Ĵ is the current density operator:

Ĵf�r, r0� � 2
ie
2m

µ
≠

≠r
2

≠

≠r0

∂
f�r, r0�

Ç
r!r0

.

The variational derivative

�	 ĵa�z �; ĵb�z 0�
� �
1
2

Tr

Ω
sxĴa

dG�z̃ ; z �
dAb�z 0�

æ
z̃!z ,A�0

(6)

gives the current density correlation function. Hereinafter,
	Â; B̂
 � ÂB̂ 1 B̂Â, for any operators Â and B̂. Integrat-
ing Eq. (6) over the cross sections of the leads yields the
total current correlation function (1).

Our main purpose is to reduce the above equations
to simpler ones which hold in the semiclassical limit,
a ¿ lF . However, since the transition between classi-
cal trajectories plays a crucial role here, it is difficult to
implement periodic orbit theory [12] for this purpose; see,
e.g., [13]. The standard diagrammatic technique [14] is
also not suitable, because it is technically difficult to take
the classical correlations into account. To circumvent this
difficulty, we follow Ref. [9] and add a weak random po-
tential, V �r�, to the semiclassical potential U�r�. The ran-
dom potential, V �r�, generates a small angle scattering that
models the diffraction; the total Hamiltonian of our sys-
tem is Ĥ � Ĥ0 1 V �r�, where Ĥ0 � p2�2m 1 U�r� is
the bare Hamiltonian of the system. To mimic the diffrac-
tion effects, the strength of V �r� is chosen such that the
transport mean free time for the scattering on V �r� is
given by

1�ttr � llF�a . (7)

The numerical coefficient in Eq. (7) is not important for
the calculation with logarithmical accuracy; value of ttr
enters the final result only through tE � �1�l� ln�lttr�; see
Refs. [9,15] for further discussion.
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The construction of the semiclassical approximation of
the Green function follows the usual steps [11,16]. First,
the operators are Wigner transformed:

GW �R, P; t, t0� �
Z
dreiP?rG

µ
R 2

r
2

, t; R 1
r
2

, t0
∂

.

Next, G is averaged over the disorder in the self-
consistent Born approximation, and the Green function is
projected on the energy shell. The projection is obtained
by changing the coordinates from �R, P� to �j, x� where
j � H0�R, P� 2 eF is the distance along the energy
axis in phase space, and x � �R, n� are coordinate on
the energy shell, n being a unit vector in the momentum
direction. The outcome of the procedure is that the
on-shell matrix Green function,

g�x; t, t0� �
i

pn

Z
dj GW �j, x; t, t0� , (8)

where n is the Weyl density of states, satisfies the
Boltzmann-like equation:∑

≠

≠t
1

≠

≠t0
1 L̂ 1 Ô

∏
g�x; t0, t0� � I�g� . (9)

Here, the Liouville operator is given by

L̂ �
≠H0

≠P
≠

≠R
2

≠H0

≠R
≠

≠P
, (10)

while the source operator Ô is

Ôg � ievF�A�x, t0�gŝx 2 A�x, t�ŝxg� ,

vF � yFn ,

and yF is the Fermi velocity of the electrons. Finally, the
probabilistic effects in the problem are introduced by

I� g� � 2
1

2ttr
�=2

ng � g 2 g � =2
ng� ,

=n � n 3
≠

≠n
,

where ttr is given by (7), and the convolution of two func-
tions, say f and g, is defined as

� f � g� �t, t0� �
Z
dt̃f�t, t̃�g�t̃, t0� .

The homogeneous Eq. (9) is supplied with the constraint

g � g � d�t 2 t0� . (11)

In order to find (6), Eqs. (9)–(11) should be solved in
first order in A: g � g0 1 g1 where g0, g1 are zeroth and
first order in A, respectively. The zeroth order term is

g0 �

∑
d�t 2 t0�;

R de

2p e
ie�t2t0�gK0 �x; t1t

0

2 , e�
0; 2d�t 2 t0�,

∏
,

(12)

where the Keldysh component satisfies the equation∑
≠

≠t
1 L̂ 2

1
ttr

=2
n

∏
gK0 �x; t, e� � 0 . (13a)

The leads are assumed to be in thermal equilibrium, there-
fore, the boundary conditions are

gK0 �x ! 6`; e� � 2 tanh

µ
e 6 eV�2

2T

∂
, (13b)

where T is the temperature.
Calculating the off-diagonal components of

g1�e, v; x� �

√
gR1 gK1
gZ1 gA1

!
,

where g�e, v� �
R
dt dt g�t1, t2�eiet1ivt , t6 � t 6

t�2, we first solve the equation for the component gZ1 :∑
2iv 1 L̂ 1

1
ttr

=2
n

∏
gZ1 � 22ievFAv . (14a)

Then, we find the diagonal components from Eq. (11) as
2gR1 � 2gK0 � gZ1 , 2gA1 � gZ1 � gK0 , and substitute them
into the equation for the component gK1 . We thus obtain
∑

2iv 1 L̂ 2
1
ttr

=2
n

∏
gK1 � 2ievFAv 2

1
2ttr

=n�gK0 �x; e 1 v�gK0 �x; e�=ng
Z
1 �x, v�� . (14b)
Solving Eqs. (14a) and (14b), and substituting the results
in Eq. (6), we find with the help of Eq. (8):

�	 ĵa�z �; ĵb�z 0�
�v �
ne2y

2
F

2
��nan

0
b�F1 1 F2��� , (15)
where the left-hand side represents the v component of
the Fourier transform with respect to t 2 t0, and ��· · ·��
denotes an angular averaging with respect to n and n0. The
entries in Eq. (15) are
F1 � Dv�x, x0�Q�x0� 1 D2v�x0, x�Q�x�, F2 �
Z dx0

Vd
Dv�x, x0�D2v�x0, x0�

∑
2L̂

1
ttr

=2
n0

∏
Q�x0� , (16)

where Vd is the surface of unit sphere in d dimensions, Dv�x, x0� is the classical propagator of the system,

∑
2iv 1 L̂ 2

1
ttr

=2
n

∏
Dv�x, x0� � Vdd�x 2 x0� , (17)
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and Q characterizes the available energy space for the
electron-hole pairs:

Q�v; x� �
Z
de

∑
1 2

1
4
gK0 �x; e 1 v�gK0 �x; e�

∏
.

(18)

In equilibrium, gK0 � 2 tanh�e�2T �, and consequently

Qeq�v� � 2h̄v coth
h̄v

2T
. (19)

Thus, F2 vanishes, and F1 reproduces the fluctuation-
dissipation theorem: F1 � 2Qeq ReDv�x, x0; v�.

Equations (15)–(17) describe the noise in any system
with a semiclassical potential. To obtain more explicit
results, we have to specify a model. We assume that the
average dwell time, td , is much larger than the classical
ergodic time within the dot, and the contacts have the same
number of channels. Moreover, we consider only noise at
frequencies vtd ø 1 not to be concerned with effects of
dynamical screening.

The subsequent consideration follows the lines of the
calculation of weak localization corrections [9]. The re-
sults for the factor (18) inside the dot (see Sec. IV of
Ref. [9]) take the form Q � Qeq 1 Qneq, where

Qneq�v,V � �

p
G

4

X
6

�Qeq�v 6 eV � 2 Qeq�v�� ,

(20)

and G is given by (3). Within the same approximation, Q
in the leads is given by the equilibrium value (19).

The appearance of the factor
p

G in (20) is not acciden-
tal. In the absence of the small angle scattering, gK0 �x� can
take only two possible values: either the equilibrium value
of the left lead or that of the right lead. This is because a
point x in phase space has a unique trajectory connecting
it to incoming trajectories from the leads. Consequently,
Eq. (18) implies that Q�x� � Qeq. However, diffraction,
modeled by small angle scattering, allows for two distinct
classical trajectories to reach the same point. At such a
point, gK0 �x� is a linear combination of the equilibrium val-
ues of the leads, and therefore Q�x� assumes a nonequilib-
rium value. Thus, the factor

p
G expresses the probability

of two classical trajectories to become close to each other
so that a transition from one to another due to diffraction
is possible.

Having the function Qneq in the form (20), the prob-
lem of using Eqs. (15) and (16) for the evaluation of
the noise spectrum becomes equivalent to the evaluation
of the weak localization correction (Sec. VI of Ref. [9])
up to the replacement of the Cooperon with Eq. (20):
C �1, 1� ! 2pnQneq. We, thus, obtain the noise spectrum:

S�v� � G

∑
Qeq�v� 1

1
2

p
GQneq�v,V �

∏
, (21)

where G is the conductance of the dot and Qeq is given by
Eq. (19). Substituting Eq. (20) into Eq. (21), we obtain
the final result for the noise spectrum in the quantum dot
with symmetric contacts:
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S�v� � G

Ω
Qeq�v�

1
F
2

X
6

∑
Qeq

µ
v 6

eV
h̄

∂
2 Qeq�v�

∏æ
,

where F is given by Eq. (3). In the limit T � 0,Qeq�v� �
2h̄jvj and S�v� at v � 0 reduces to Eq. (1).

To summarize, we constructed a theory for the
quantum-to-classical crossover of the shot noise in meso-
scopic system. A key ingredient of this crossover is the
divergence of classical orbits in chaotic systems. This
divergence is determined by the Lyapunov exponent.
Thus, measurements of the shot noise in quantum dots as
function of the dwell time can be used to determine the
Lyapunov exponent of the underlying classical system.
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