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Quantum State Reduction and Conditional Time Evolution
of Wave-Particle Correlations in Cavity QED
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We report measurements in cavity QED of a wave-particle correlation function which records the
conditional time evolution of the field of a fraction of a photon. Detection of a photon prepares a state
of well-defined phase that evolves back to equilibrium via a damped vacuum Rabi oscillation. We record
the regression of the field amplitude. The recorded correlation function is nonclassical and provides an
efficiency independent path to the spectrum of squeezing. Nonclassicality is observed even when the
intensity fluctuations are classical.

PACS numbers: 42.50.Dv, 32.80.– t, 42.50.Ct
The seminal work of Hanbury-Brown and Twiss [1]
marks the beginning of the systematic study of the quan-
tum fluctuations of light. Two lines of experiments are
notable: those measuring correlations between pairs of
photodetections (particle aspect of light) [2–6] and squeez-
ing experiments which measure the variance of the electro-
magnetic field amplitude (wave aspect of light) [7–9]. No
attempt has been made previously to draw the particle and
wave aspects together by correlating a photon detection
with fluctuations of the electromagnetic field amplitude.
We have done this, extending the ideas of Hanbury-Brown
and Twiss to record the conditional time evolution of the
amplitude fluctuations of an electromagnetic wave. Mea-
surements are made in the strong-coupling regime of cavity
quantum electrodynamics (QED) [10] and exhibit the non-
classical fluctuations of light in a dramatic new way.

A photon correlator detects the emission of a photon
from an optical source and correlates it with a second pho-
ton detected after a delay t [6]. We correlate a photon
emission with the photocurrent of a balanced homodyne
detector [11] which simultaneously measures a quadrature
amplitude of the optical field. We average over many pho-
tocurrent samples, each triggered on a photon count, and
recover the conditional time evolution of the field ampli-
tude out of the shot noise. The recorded wave-particle cor-
relation is subject to classical bounds that are more general
than those which test particle or wave aspects of light in-
dividually. In particular, there is an upper bound on the
variance, in addition to the usual lower bound, whose vio-
lation shows that both quadrature amplitudes of squeezed
light are nonclassical [12].

Cavity QED systems have been used in numerous stud-
ies in quantum optics [10], recently to detect a single micro-
wave photon nondestructively [13], and to produce photon
number states and trapping states of the electromagnetic
field [14,15]. Operated at optical frequencies, they are
sources of nonclassical light, as demonstrated in earlier
photon correlation [3,4] and squeezing [16] measurements.
The system in our laboratory consists of a beam of opti-
cally pumped Rb atoms traversing a high finesse Fabry-
0031-9007�00�85(15)�3149(4)$15.00
Perot cavity driven by laser light [4,5]. The cavity defines
a TEM00 Gaussian standing wave mode, of waist w0 �
21 mm and length l � 410 mm. We use a one-sided con-
figuration with a 10 ppm transmission input mirror and a
285 ppm transmission output mirror. Three rates charac-
terize the system: the optimal dipole coupling g0, field de-
cay rate k, and polarization decay rate g�. Their values are
�g0, k, g���2p � �12, 8, 3� MHz, which places the sys-
tem in the strong-coupling regime of cavity QED [satu-
ration photon number n0 � 1.33�g��g0�2 � 0.08] where
equilibrium is approached via the vacuum Rabi oscillation
of a fraction of a photon [17–20]. Time scales are com-
patible with present digitizing electronics.

A schematic of the experimental apparatus is shown in
Fig. 1. Light of wavelength 780 nm from a Ti:sapphire
laser enters a Mach-Zehnder interferometer, driving the
cavity QED system in one arm and providing a local os-
cillator (LO) for the balanced homodyne detector (BHD)

FIG. 1. Simplified diagram of the experimental setup. The
fluctuations of the signal field are detected with a balanced ho-
modyne detector (BHD) situated at the output beam splitter of a
Mach-Zehnder interferometer. Sampling is triggered by counts
out of the avalanche photodiode (APD).
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in the other [11]. The BHD has strong common mode
suppression and permits the phase sensitive measurement
of the field quadrature to be made. Part of the signal es-
caping the cavity creates photodetections at the avalanche
photodiode (APD), which trigger a digital oscilloscope to
record in coincidence the BHD photocurrent. To maintain
the cavity on resonance we utilize a lock cycle, chopping
between a higher power auxiliary lock beam and the weak
drive. A beam splitter directs 15% of the signal to the par-
ticle detector, represented in the figure by a single APD
(the experiment uses a pair of APDs behind a 50�50 beam
splitter). The other 85% of the signal goes to the wave
detector, provided by the BHD, where it is mixed with the
LO —whose relative phase we control with a piezoelec-
tric transducer — and detected with fast photodiodes. The
photocurrent is ac amplified by 65 dB, 70 MHz low pass
filtered, and sampled and averaged with a fast digital os-
cilloscope at 2 Gs�s. The photon detections at the APDs
which trigger the digital oscilloscope to record the BHD
photocurrent can alternatively be used to obtain the inten-
sity correlation function, g�2��t�.

We sketch what this apparatus measures by considering
the reduction of the equilibrium state of the cavity QED
system on the occasion of a triggering photon detection.
Defining Q̂u � 1

2 �âe2iu 1 âyeiu�, where â is the annihi-
lation operator for the cavity field and u is the BHD phase,
we consider the quadrature amplitude, Q̂0±, in phase with
l � �â�. For weak excitation, and assuming fixed atomic
positions ��rj�, to lowest order in l the equilibrium state is
the pure state [21,22]

jc� � 	j0� 1 lj1� 1 �l2�
p

2 � �1 1 z � j2� 1 · · ·
 jG� 1 · · · ,
(1)

where jG� is the many-atom ground state and z is a com-
plicated function of the dipole coupling strengths �gj �
g��rj�� [23]. After the detection, the conditional state is
initially the reduced state âjc��l, which then relaxes back
to equilibrium. The reduction and regression is traced by
[21,22]

jc� ! �j0� 1 l	1 1 zf�t�
 j1� 1 · · ·� jG� 1 · · · , (2)

where
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Thus, the quadrature amplitude expectation makes the
transient excursion �Q̂0±� ! l	1 1 zf�t�
 away from its
equilibrium value �Q̂0±� � l. This is to be contrasted
with the excursion of the photon number, �âyâ� !
l2	1 1 zf�t�
2, away from �âyâ� � l2.
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A photon correlator measures the photon number tran-
sient 	1 1 zf�t�
2 � g�2��t� [3–5] while the apparatus
of Fig. 1 measures the transient 1 1 zf�t� in the field.
The two measurements record the same information for
jz j ø 1, but are different outside this limit of weak non-
linearity. If jz j . 2, for example, the fluctuation 1 1

zf�0� , 21 in the field is not allowed classically, com-
pared with g�2��0� . 1 which is classically allowed. Dif-
ferences can also appear when an average over z (atomic
positions) is taken, as it is in our experiment, due to the
atomic beam.

To address the issue of nonclassicality qualitatively, we
must introduce appropriate inequalities. Intensity fluctua-
tions in cavity QED have been shown to violate the clas-
sical inequalities g�2��0� $ 1 [3,5] and jg�2��t� 2 1j #

jg�2��0� 2 1j [4,5]. For our field measurements, a gen-
eralized set of inequalities applies. Formally, the mea-
sured wave-particle correlation function is �: �âyâ� 3

�0�Q̂u�t� :���âyâ�. Normalizing by
p

h l, where h is the
coupling efficiency into the BHD, separating the fluctua-
tion Dâ from the mean amplitude l, and assuming
Gaussian fluctuations (third-order moments vanish), we
express the measured correlation function as

hu�t� � cosu 1 2
�: DQ̂0±�0�DQ̂u�t� :�

l2 1 �DâyDâ�
1 j�t� , (5)

where j�t� is the residual shot noise, with j�0�j�t� �
�G�16kl2hNs�e2Gt , where G is the BHD bandwidth and
Ns is the number of samples. The inequalities

0 # h0±�0� 2 1 #
2

1 1 l2��DâyDâ�
, (6a)

jh0±�t� 2 1j # jh0±�0� 2 1j (6b)

follow from Eq. (5) when the quantum average is replaced
by an average over a classical stochastic field [the over-
bar denotes the average with respect to j�t�]. The lower
bound in (6a) addresses similar physics to the inequality
g�2��0� $ 1. From it [together with (6b)], h0±�0� is nec-
essarily a maximum if the fluctuations are classical. This
requirement follows from the conditional sampling, with
its bias towards intensity maxima at t � 0; the observed
field fluctuations should thus be in phase with the average
field l, and also in phase with the LO when set to u � 0±.
The upper bound in (6a) does not exist for g�2��0�. It sets a
bound on the overall size of the fluctuation, jh0±�t� 2 1j.
Quantum squeezing violates this bound [24]—sometimes
when DQ̂0± is the squeezed quadrature and always when it
is the unsqueezed quadrature. Extremely large violations
of the upper bound are possible.

From Eq. (5), our measurements give the spectrum of
squeezing [9,25]

S�n, u � 0±� � 4F
Z `

0
dt cos�2pnt� 	h0±�t� 2 1
 , (7)

where F � 2k�âyâ� is the photon flux into the correlator.
This expression is independent of the BHD efficiency h.
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Thus, through conditioning, we avoid the degradation of
squeezing encountered by a standard measurement [8,9].
While a related conditional detection scheme has been pro-
posed for observing photon number states in parametric
down-conversion [26,27], that scheme does not display the
efficiency independence observed here.

Figure 2 shows a theoretical prediction for our cavity
QED system, comparing results for one optimally coupled
atom with those for an atomic beam; the detection scheme
has been implemented in a quantum trajectory treatment
[28]. The result for one atom [Fig. 2(a)] shows a very large
violation of the classical inequalities, which remains sub-
stantial, though reduced, in the presence of atomic beam
fluctuations [Fig. 2(b)]. In both cases, the phase of the
vacuum Rabi oscillation is anomalous, violating the lower
bound of inequality (6a). For the atomic beam typical val-
ues of z are a little smaller than unity, so that even after
an average is taken g�2��t� � 	h0±�t�
2, as one deduces
from Eq. (2) [Fig. 2(c)]. Our measurements are made at
higher photon number where spontaneous emission is sig-
nificant. Under these conditions, h0±�t� and g�2��t� are not
so closely related (compare Fig. 4 below).

In the experiment, we characterize the system with mea-
surements of the intensity correlation function g�2��t� and
then measure the wave-particle correlation function. We
lock the phase u of the LO relative to the signal by actively
stabilizing the length of the Mach-Zehnder interferometer
with an auxiliary He-Ne laser; u can be changed by 146±

increments [180± 3 �lHe-Ne�lTi:sapphire�] in a controlled
manner.

Figure 3 shows results for the conditionally averaged
BHD photocurrent, and illustrates what we obtain in a raw,
unnormalized measurement. In-phase and out-of-phase
settings of the LO verify that the signal becomes inverted
under this change of phase. The vacuum Rabi oscillation at
frequency g0

p
N̄�2p � 40 MHz is clearly present in both

data sets, and at the in-phase setting of the LO [Fig. 3(a)]

FIG. 2. Monte Carlo simulations for weak excitation (�âyâ� �
1024, l2��DâyDâ� ¿ 1): (a) h0±�t� for one atom optimally
coupled to the cavity mode (2 3 104 samples); (b) h0±�t� and
(c) g�2��t� for an atomic beam with effective atom number N̄ �
11 (5 3 104 samples). In (a) and (b) the light parts of the traces
violate the classical inequalities. The shaded region is classically
allowed after taking into account the residual shot noise.
its phase violates the lower bound of (6a). Thus, in spite
of the preference for triggering photodetections at inten-
sity fluctuation maxima, we observe the field fluctuating
to lower the intensity; we observe a field fluctuation out of
phase with the average field.

To assess whether the upper bound of (6a) is violated
we must scale the raw data, and also determine the ratio,
l2��DâyDâ�, of coherent to incoherent intensities. The
scaling may be performed to fit the residual shot noise
level, under the assumption l2��DâyDâ� ¿ 1. We are
unable, however, to determine the value of the ratio itself,
and we have not therefore demonstrated the expected vio-
lation of the upper bound.

Operating at higher excitation we obtain the results of
Fig. 4. Here we contrast measurements of g�2��t� and
hu�t�. The former shows classical photon correlations —
photon bunching and super-Poissonian counts — and no
significant oscillation. There is still a strong oscillation
of the conditional field, however, and it still exhibits the
anomalous phase. Inequality (6b) is violated with no vio-
lation of the lower bound of (6a). We interpret Fig. 4(b) by
positing a background of classical fluctuations to which the
nonclassical fluctuation of Fig. 2(c) is added. The ampli-
tude of the latter is reduced due to spontaneous emission,
and the background is likely caused by atomic beam fluc-
tuations in combination with spontaneous emission. The
spectrum of squeezing [Fig. 4(c)] separates the nonclassi-
cal fluctuations from the classical fluctuations. To obtain
it, we symmetrize the scaled signal in Fig. 4(b) and take
the Fourier transform as specified in Eq. (7). The spectrum
is negative in the vicinity of the vacuum Rabi frequency,
evidencing, in frequency space, the anomalous phase. We
measure �5% reduction of the noise below the standard
quantum limit. This determination is independent of the
coupling efficiency into the BHD.

The notable feature of our measurement is that accord-
ing to the reduction postulate, the detection of a photon
(particle aspect of light) conditionally selects a field am-
plitude (wave aspect of light) oscillating in time with an

-50

0

50

-100 0 100

0

50

τ(ns)
-100 0 100

A
C

 P
ho

to
cu

rr
en

t (
µA

)

τ(ns)

a b

-50

FIG. 3. Unnormalized ac photocurrent proportional to
hu�t� 2 1; for an effective atom number N̄ � 11 and intra-
cavity photon number �âyâ� � 0.07: (a) h34±�t� (3 3 104

samples) and (b) h180±�t� (5 3 104 samples). The signal
decreases at intermediate phases and disappears at 90±.
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FIG. 4. Observations for an intracavity photon number
�âyâ� � 0.11 and effective atom number N̄ � 13: (a) g�2��t�
shows classical nonoscillatory behavior, (b) h0±�t� shows
nonclassical oscillatory behavior, and (c) S�n, u � 0±� showing
squeezing below the standard quantum limit (the continuous
line is the optimally filtered spectrum). The shaded region in
(b) is classically allowed after taking into account the residual
noise. The dashed line in (c) is the boundary between classical
(above) and nonclassical (below).

anomalous phase. Our experiment catches the field fluc-
tuations as they occur, and thus we have been able to
observe the anomalously phased oscillation directly. We
anticipate that wave-particle correlations will find wide ap-
plication not only in further studies of the fundamental na-
ture of light, but also in practical areas of science such as
imaging.
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