
VOLUME 85, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 9 OCTOBER 2000
Twist Mode in Spherical Alkali Metal Clusters
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A remarkable orbital quadrupole magnetic resonance, so-called twist mode, is predicted in alkali metal
clusters where it is represented by Ip � 22 low-energy excitations of valence electrons with strong M2
transitions to the ground state. We treat the twist by both macroscopic and microscopic ways. In the
latter case, the shell structure of clusters is fully exploited, which is crucial for the considered size region
(8 # Ne # 1314). The energy-weighted sum rule is derived for the pseudo-Hamiltonian. In medium
and heavy spherical clusters, the twist dominates over its spin-dipole counterpart and becomes the most
strong multipole magnetic mode.

PACS numbers: 36.40.Cg, 36.40.Gk, 36.40.Vz, 36.40.Wa
Orbital magnetism in atomic clusters is a subject of spe-
cial interest. Clusters may contain many atoms and, there-
fore, single-particle orbital moments of valence electrons
can reach very big values. This results in huge orbital ef-
fects, for example, in strong orbital magnetic resonances.
These resonances are of a general character and exist in dif-
ferent finite Fermi systems (nuclei, atomic clusters, etc.).
M1 scissor mode in deformed systems [1–4] and M2 twist
mode in systems of arbitrary shape [5–10] are the most fa-
mous examples. They have been observed in atomic nuclei
(see, e.g., [2,9]) but not yet in clusters. The scissors mode
has been already predicted in clusters [3,4]. In the present
paper we will discuss properties of the twist mode in this
system.

By definition, the twist is the quadrupole torsional vi-
bration mode of an elastic globe [5]. It is generated by the
operator T̂ � e2iazlz � ea �u? �= with the velocity field �u �
� yz, 2xz, 0� [5,6]. The mode is viewed macroscopically
(see Fig. 1) as small-amplitude rotationlike oscillations of
different layers of a system against each other with a ro-
tational angle proportional to z (projection to the axis of
rotation). The restoring force of the twist is determined by
the quadrupole distortions of the Fermi surface in the mo-
mentum space. So, the twist represents transverse magnetic
quadrupole oscillations of an elastic medium, provided by
variations of the kinetic-energy density. The twist is a gen-
eral feature of any three-dimensional finite Fermi system
which demonstrates an elastic behavior. Atomic nuclei
[6–9] and clusters [10] are the most typical examples. Un-
like the M1 scissor mode which has the similar quantum
origin but can exist only in deformed systems, the twist
manifests itself in Fermi systems of any shape, spherical
and deformed.

Expressions for the twist energy and M2 strength, ob-
tained within the elastodynamical models [6,8] for atomic
nuclei, can be reformulated for clusters as
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where B�M2� is the probability of an M2 transition from
the ground state to a 22 twist state, rs is the Wigner-Seitz
radius, and Ne is the number of valence electrons. We will
show that expressions (1) provide good qualitative agree-
ment with microscopic results. However, elastodynamical
models do not access the shell structure of nanoparticles
and so cannot clarify the microscopic origin of the twist.
Moreover, these models are questionable for small sys-
tems. In this paper we will present, for the first time, a
microscopic analysis of the twist, fully embracing shell ef-
fects. Both small and heavy clusters will be covered.

The operator for M2 transition [11], F̂�M2, m� �
mb

p
10 r�gs�Y1ŝ�2m 1

2
3gl�Y1l̂�2m�, is a sum of spin and

orbital components with gs � 2 and gl � 1. The external
field generating the twist, zlz ~ r�Y10lz�, is a part of
the orbital component with m � 0. So, it is natural to
consider the twist as a part of the orbital M2 resonance.
Since both are of a similar nature, we will call the whole
orbital M2 resonance also a twist.

In spherical systems, only the spin-dipole channel de-
livers the residual interactions for 22 excitations. Investi-
gations [7,12] have shown that twist in spherical atomic

FIG. 1. Nodeless (left) and one-node (right) branches of twist
mode [6].
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nuclei depends only weakly on this residual interaction
and the remaining dependence is caused mainly by the
spin-orbit coupling. The influence of the residual interac-
tion should then be even smaller for metal clusters where
the spin-orbit coupling is negligible. Thus, we can deal
with a simple particle-hole (1p-1h) picture. Also, we will
confine our consideration to the spherical jellium model
which is compulsory for analysis of large systems. These
two approximations are appropriate for the present pur-
pose of a first survey of the twist mode. At the side of
the mean field Hamiltonian, we take into account local
as well as nonlocal effects which are caused by the ionic
pseudopotential. For Na and K clusters, we calculate the
Kohn-Sham single-particle scheme within the approach
[13] which properly treats the local effects. For Li clusters,
the pseudo-Hamiltonian [14],

H0 � 2
h̄2

2me

�� ? �1 1 a�r�� �� 1 �L ? b�r� �L

1 u�r� 1 W�r� , (2)

with the parametrization [15] is used. The local ionic con-
tribution is carried in u�r�, and nonlocal effects lead to
the effective mass m��r� � me��1 1 a�r�� and the orbital
term ~ b�r�. Coulomb and exchange-correlation poten-
tials are represented by W�r�.

Results of our studies are exhibited in Figs. 2–4 and
Table I. In Fig. 2 the orbital M2 strength, B�M2� �
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FIG. 2. The distribution of M2 strength in spherical Na (left)
and K (right) clusters of different sizes, as indicated.
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j�ijF̂�M2�j0	j2, is presented for light, medium, and heavy
spherical Na and K clusters [i represents �1p-1h�22

states]. Only the orbital part of the M2 transition operator
is used. Figure 2 shows that dominant twist strength
is concentrated in the one 1p-1h peak with the lowest
energy. This relation persists independent of N because
both the twist mode and other relevant 1p-1h excitations
follow a trend ~ N21�3

e (see also Fig. 4). The degree of
concentration, however, changes with N . The twist peak
exhausts 100%, 80%, and 60% of the total M2 strength
in Na1

9 , Na1
93, and Na1

1315, respectively. It corresponds
to the nodeless branch of the twist mode (see Fig. 1, left
side). The nature of the peak is clarified in Fig. 3. It rep-
resents n, l ! n, l 1 1 transition between single-particle
levels with the node number n � 1 and maximal orbital
moments l. The levels belong to the last occupied and
the first empty shells. As a result, the twist can serve as
a valuable source of information about (i) single-particle
levels with maximal orbital momenta near the Fermi
surface and (ii) the energy gap, DEsh, between the Fermi
and next empty shells.

In large clusters weaker peaks also contribute to the
twist resonance. As a rule, they represent n, l ! n, l 1 1
transitions with n � 2, 3, . . . and lower orbital moments.
Following our analysis of the velocity field, these peaks
also contribute mainly to the nodeless twist branch (Fig. 1,
left side). Their contribution grows with increasing clus-
ter size. They come energetically closer to the dominant
peak (see Fig. 2) such that they may not be easily distin-
guishable experimentally. Other twist branches (see, e.g.,
the right side of Fig. 1) carry only a small fraction of the
total strength and lie at higher energies.
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FIG. 3. Single-particle levels and M2 1p-1h transitions in Na1
9

and Na1
93. The Fermi levels are marked by the double line.

For the main transitions (bold arrows), the contributions to the
complete strength B�M2� are given.
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FIG. 4. The strength normalized by N2
e (upper panel) and av-

eraged energy (lower panel) of the twist resonance in K, Na,
and Li clusters. The trends B�M2� ~ N2

e and v̄ ~ N21�3
e are

distinctive.

Figure 2 demonstrates the similarity of the twist in Na
and K clusters. A much similar pattern appears for Li.
However, there are also distinctive differences in twist
energies and strength. These values are compared in
Fig. 4. K, Na, and Li are distinguished by Wigner-Seitz
radii [in atomic units, rs�K� � 5, rs�Na� � 3.96, and
rs�Li� � 3.25, respectively] and by the different influence
of the ionic structure. Figure 4 shows the following trends:
(i) The denser the metal, the higher the twist energy. This
can be explained by the fact that the smaller the rs, the
deeper the corresponding single-particle potential [16].
In Li clusters the potential is most deep and, therefore,
has the largest energy gap DEsh between neighboring
quantum shells. Being close to DEsh, the twist energy
should increase from K to Li. (ii) In all the size regions
the twist mode resides far below the Mie dipole plasmon
and, at the same time, it stays still far above typical ionic

TABLE I. Orbital energy-weighted sum rule Sl (in units
m

2
b Å2 eV) and ratio R � Sl�Ss for Na and Li spherical clusters

in the energy interval 0–6 eV (95% 99% of the sum rules are
exhausted in the interval 0–2 eV). Values R are equal for K,
Na, and Li clusters of the same size.

Sl R
Ne K, Na Li K, Na, Li

8 1.21 3 102 1.08 3 102 0.33
20 7.28 3 102 6.42 3 102 0.80
40 2.55 3 103 2.23 3 103 1.40
92 1.35 3 104 1.15 3 104 3.21

440 2.01 3 105 1.67 3 105 9.72
vibrations �v 
 50 meV�, which both help for an experi-
mental discrimination. The heavier the cluster, the smaller
the energy gap DEsh and, therefore, the twist energy.
Figure 4 demonstrates the energy fall ~ N21�3

e . It is worth
noting that such dependence of twist energy takes place in
both atomic clusters and nuclei. (iii) The denser the metal,
the smaller the resonance strength. As is shown below,
the energy-weighted sum rule Sl keeps the same value for
K, Na, and Li clusters of a given size (if one neglects the
ionic structure effects). So, the increase in the excitation
energy has to result in the decrease of the strength. In Li
clusters the strength is additionally suppressed due to the
effective mass, m��me � 1.2. (iv) B�M2� grows as N2

e
(see upper part of Fig. 4).

All the trends discussed above are supported by the
elastodynamical results (1). However, the quantitative
agreement is less perfect. Equations (1) considerably over-
estimate both twist energy and strength (up to 80% and
30% in light and heavy clusters, respectively). That is not
so surprising because we find that the twist mode is domi-
nated by the shell structure while the collective model av-
erages over shells.

The attractive feature of the orbital M2 mode is that its
total strength can be estimated in a simple fashion by the
energy-weighted sum rule as

S �
X

i

vij�ijF̂�M2�j0	j2



1
2

2X
m�22

�0j���F̂�M2m�, �H0, F̂�M2m�����j0	 � Ss 1 Sl ,

(3)

where
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75h̄2

2pme
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�2li 1 1�
Z

�1 1 a 1 8r2b�rnili dr ,
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25h̄2

3pme
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nili

�2l3
i 1 3l2

i 1 li�

3
Z µ

1 1 a 1
8
5

r2b

∂
rnili dr

(4)

are contribution of the spin and orbital parts of the tran-
sition operator F̂�M2�. In Eq. (3) the sum runs over all
�1p-1h�22 states. In Eqs. (4), a�r� and b�r� are the func-
tions responsible for the nonlocal effects in the pseudo-
Hamiltonian (2), rnili � �rRnili �r��2, and Rnl�r� is the
radial wave function of the single-particle state nl. In
Eqs. (4), the sum runs over all occupied single-particle
levels. The spin-orbit coupling is neglected in the calcu-
lations, but it would not contribute directly to Sl anyway.
Without the spin-orbit coupling, the spin-dipole residual
two-body interaction also does not contribute to Sl . The
calculations show that, even for Li clusters, one may safely
neglect the spin-orbit correction b because it contributes
less than 0.1%. The influence of the correction a is strong
3143
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in Li: we have m�
e�me � 1.2 [17] and so this correction

decreases Sl by a factor of �4�5.
If one neglects the nonlocal corrections (which is jus-

tified for Na and K clusters [14,17]), then the radial in-
tegrals in Eqs. (4) are just 1, and both Ss and Sl become
very simple and even model independent (the similar sum
rules have been derived for the twist in atomic nuclei [7]
and spin-dipole excitations in clusters [18]). This is evi-
dent for Ss where 2

Pocc
nili

�2li 1 1� � Ne. As for Sl , one
should mention that different models predict, as a rule, the
same sequence of occupied levels in spherical clusters, at
least for light and medium sizes. Finally, it is worth em-
phasizing that (i) the calculation of Sl is extremely simple:
it is enough to know the orbital moments l of occupied
single-particle levels; (ii) both Ss and Sl values are equal
for clusters of a given size but of different metals (K, Na),
which agrees with Eqs. (1).

The twist part, mb

p
80�27 rY10lz , of the transition op-

erator F̂�M2� gives exactly 4�9 of the complete Sl values.
Following Fig. 1, the twist represents the oscillations in
equatorial planes. The total orbital M2 resonance takes
also into account the meridian oscillations.

Results presented in Table I show that the orbital M2
energy-weighted strength dominates over the spin one
already in clusters with Ne � 40. Starting with Ne � 92,
the orbital contribution becomes overwhelming and,
already for Ne � 440, demonstrates a huge value of
2 3 105m

2
b Å2 eV. Since the long-wave M1 response,

both spin and orbital, is forbidden in spherical clusters
(indeed, both spin and orbital 1p-1h matrix elements
of M1 transition are proportional to the radial integralR

Rn1l1 �r�Rn2l2r
2 dr � dn1l1,n2l2 which is zero in the non-

diagonal case due to orthonormalization condition), the
twist starting with medium sizes becomes the strongest
multipole magnetic mode. This fact emphasizes its fun-
damental character.

Our calculations indicate that twist mode cannot be de-
tected in photoabsorption spectra since it is masked by low-
energy E1 excitations. These excitations are much weaker
than the dipole plasmon but, nevertheless, strong enough
to mask the twist. The inelastic scattering of polarized
optical photons (resonant Raman scattering) seems to be
more appropriate to observe the twist, though any conclu-
sions about perspectives of these reactions still requires a
careful analysis of the competition between E1, E2, and
M2 modes. The Raman scattering can separate electric
and magnetic modes due to the polarization selection rules.
Clusters with about 104 atoms seem to be optimal. In such
clusters, the twist strength reaches impressive values and,
at the same time, is strongly concentrated at a very nar-
row low-energy interval (which remains still well separated
from ionic vibrations). Our estimations show that in heavy
clusters, in spite of a dense spectrum, the twist exists and
carries the spectroscopic information mentioned above.
3144
In summary, the M2 orbital resonance and its important
part, the twist mode, have been investigated in spherical
alkali metal clusters. The macroscopic treatment of the
twist exhibits this mode as a general feature of any finite
three-dimensional Fermi system and provides a pertinent
description of the basic trends. However, it is not deliver-
ing a quantitative agreement. The microscopic treatment,
including the novel energy-weighted sum rules, clarifies
the main properties of twist 1p-1h M2 response. The
resonance is mainly exhausted, first of all in clusters of
a moderate size, by one 1p-1h M2 transition connecting
the Fermi and next empty quantum shell, namely, their lev-
els with maximal orbital moments. As a result, the twist
can provide valuable information about the single-particle
scheme. Twist energy and strength evolve with a cluster
size as v � N21�3

e and B�M2� � N2
e . In heavy clusters

an impressive M2 strength can be reached. The twist
dominates in the low-energy region over its spin-dipole
counterpart already in clusters of a moderate size and fi-
nally becomes the strongest magnetic multipole mode. We
hope that the fundamental significance of the twist for or-
bital magnetism in spherical clusters will encourage ex-
perimentalists to look for proper ways for its observation.
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