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Viscous Fingering in a Yield Stress Fluid
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We study the Saffman-Taylor or viscous fingering instability in yield stress fluids. The theory for yield
stress fluids shows that the dispersion equation of the instability is similar to that for Newtonian fluids;
however, the capillary number governing the instability now contains the yield stress. Experiments using
gels and foams reveal very branched fingers in the gel. The results are in excellent agreement with
theory for the gel, with, in addition, a crossover from yield stress dominated to viscous behavior. The
results for foams are very different due to the existence of wall slip.

PACS numbers: 47.54.+r, 47.20.Gv, 47.20.Hw, 47.50.+d
When a fluid pushes a more viscous fluid in a Hele-
Shaw cell, the interface between the two fluids develops
an instability leading to the formation of fingerlike pat-
terns, called viscous fingers. This is the so-called Saffman-
Taylor instability [1]. For Newtonian fluids, the width w of
the viscous fingers is determined by the capillary number
Ca � DmU�g, the ratio of viscous forces, and capillary
forces; Dm is the viscosity difference between the two flu-
ids, U is the finger velocity, and g is the surface tension.
The viscous forces tend to narrow the finger, whereas the
capillary forces tend to widen it: the finger width decreases
with increasing Ca. Because of its simplicity, the fingering
instability received much attention as an archetype of pat-
tern forming systems and is by now well understood, both
experimentally and theoretically [1,2].

A whole different class of problems was uncovered
when the instability was studied for non-Newtonian flu-
ids. For such viscoelastic fluids, a wide variety of strik-
ingly different patterns are found [3]. Most natural and
industrial materials as, for example, glues, paints, mud,
etc., are non-Newtonian. It is thus also from a practical
point of view important to understand the instability in
such “complex fluids.” Experiments using foams, clays,
slurries, and polymer gels reveal branched, fractal, or frac-
turelike patterns [4–8]. The physical origin of the very
different structures is so far ill understood, mainly because
most of these fluids exhibit multiple viscoelastic charac-
teristics, which were not determined simultaneously. The
main mathematical challenge is that the pressure field is
no longer Laplacian, making even a numerical prediction
of the finger width difficult [9,10].

The examples mentioned above are all believed to ex-
hibit a yield stress: as long as the stress remains below a
critical value, they do not flow, but respond elastically to
the deformation. This might consequently be at the ori-
gin of some of the observed patterns. Theory on yield
stress fluids has revealed that the Saffman-Taylor instabil-
ity is modified drastically [11]. From the theory it can be
anticipated that multiple small fingers can propagate in par-
allel in the channel.
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Here we investigate the instability for a polymer gel
[12] and a foam [13]. The former shows a yield stress
dominated fingering regime for low finger velocities, and a
viscous regime for high velocities. The width of the fingers
in the yield stress regime is shown to be well described by
a linear stability analysis for yield stress fluids. For the
foam, however, no such crossover is observed. We show
that this is due to the absence of an apparent yield stress
because the foam “slips” at the wall.

The experiments are performed in a rectangular Hele-
Shaw cell consisting of two glass plates separated by a
thin Mylar spacer, fixing the plate spacing b, which can be
varied from b � 0.125 to 1 mm. The channel width W is
2 or 4 cm. The cell is filled with the fluid; compressed air
is used as the less viscous, driving, fluid. The fingers are
captured by a CCD camera coupled to a VCR.

For the gel, we find ramified structures for low ve-
locities. One repeatedly observes more than one finger
propagating in parallel through the cell for a significant pe-
riod of time, in agreement with the theory [11]. Eventually
one of the fingers will screen the others, which stop mov-
ing. The one finger that still moves subsequently desta-
bilizes again, and the whole process starts over. Contrary
to what is the case for Newtonian fluids, the width of the
finger does not appear to depend on either the propagation
velocity or the channel width. However, the finger width
does increase with increasing plate spacing (Fig. 1).

For high velocities, a regime is observed in which only
a single, stable finger propagates along the center line
through the cell. In addition their shape is very similar
to that for classical viscous fingers, although their relative
finger width l � w�W can be significantly below the limit
of l � 0.5 found for Newtonian fluids.

To quantify the transition between the low and the high
velocity regime, we measure the finger width as a func-
tion of the velocity (Fig. 2). As the noise is rather large,
the results have been obtained by averaging over several
experiments. For low velocities �U , 0.05 cm�s� the fin-
ger width is indeed independent of the velocity, corre-
sponding to the ramified fingers described above. For
© 2000 The American Physical Society
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FIG. 1. Snapshots of the viscous fingers for gel at low ve-
locities �U , 0.01 cm s� for W � 4 cm; plate spacings of b �
0.125, 0.25, and 0.75 mm from top to bottom.

U . 0.05 cm�s, where one finds a single finger in the
center line of the cell, the width decreases with increasing
U. We thus identify two different regimes. For low veloci-
ties, following the motion of air bubbles it seems that flow
was almost negligible in some parts of the fluid. The yield
point is not exceeded everywhere and the regime is thus
referred to as the yield stress regime. This also implies
that the finger does not “feel” the presence of the walls
delineating the canal in the Hele-Shaw cell, or necessarily
the presence of the other fingers that propagate in parallel.
This provides an intuitive reason for why multiple fingers
can occur. However, in the high velocity, viscous regime
the finger “feels” the walls, as it is able to find the center
line of the cell.

For the foam, strikingly different results are obtained.
No plateau value is found for low velocities and the finger
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FIG. 2. Finger width versus finger velocity (on a logarithmic
scale) for the gel (open circles) and for the foam (filled circles)
for W � 4 cm and b � 0.5 mm.

width already decreases with increasing velocity for very
low velocities. There is thus no indication of the existence
of a yield stress regime (Fig. 2).

The reason for the very different behavior of the two
fluids becomes clear when we characterize the rheologi-
cal behavior of the fluids. This was done on a Reolog-
ica Stress-Tech rheometer using a parallel plate geometry
(gap 2 mm, diameter 20 mm). The correct way of deter-
mining a yield stress [14] is to perform controlled stress
tests: one fixes the stress and monitors the shear rate un-
til reaching a steady state. While progressively increasing
the stress level, the steady state shear rate suddenly tran-
sits from a very small, fluctuating value (about 1025 s21),
which results from residual plasticity and inaccuracy of
the apparatus and which does not depend on stress level,
to a larger and stable stress-dependent value. For the gel,
exactly this behavior was found. In addition, for stresses
beyond the yield stress, which were determined by shear
rate controlled measurements, the stress (and consequently
also the viscosity) varies as a power of the shear rate. Such
behavior is usually described by the Herschel-Bulkley [11]
model: s � sy 1 a �gn, where sy is the yield stress and
�g is the shear rate (Fig. 3).

Surprisingly, the yield stress character of the foam does
not show up in the rheological measurements. Visual in-
spection shows that wall slip occurs when using smooth
surfaces of the plate-plate geometry. This leads in the
flow curve to a shear-thinning behavior without an appar-
ent yield stress. However, the existence of a yield stress
becomes apparent when wall slip is suppressed by gluing
sandpaper to both surfaces of the sample cell. A flow curve
similar to the one found for the gel is obtained (Fig. 3).

The anomalous behavior of the foam in the Hele-Shaw
flow can thus be understood by the fact that the foam slips
at the glass plates and consequently moves as a block. The
existence of this plug flow is confirmed by the observation
that large gas bubbles, which are entrained by the flow,
are not deformed. The yield stress of the foam is thus
only manifesting itself when the boundaries are modified
315
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FIG. 3. Rheological measurements of the stress as a function
of the shear rate for the gel ���, the foam with a smooth surface
�±� and the foam with a rough surface �≤� of the measurement
geometry; curves are fits to the Herschel-Bulkley model
(gel: sy � 16 Pa, a � 38 Pa sn, n � 0.38; foam (rough
surface): sy � 149 Pa, a � 19 Pa sn, n � 0.5; foam (smooth
surface): sy � 2 Pa, a � 5 Pa sn, n � 0.6). Fluctuations,
probably due to the inaccuracy of the apparatus, made it
impossible to obtain reliable results for stresses beyond yield
stress for intermediate shear rates, when performing shear rate
controlled measurements.

in such a way as to prevent slip at the wall. Thus, to
investigate the effect of the yield stress on the Saffman-
Taylor instability, we focus on the gel.

Theory for the instability in yield stress fluids has shown
that, as is the case for Newtonian fluids, the Saffman-
Taylor instability can occur if the yielding fluid (1) is
pushed by a less viscous fluid (2) as soon as the wall
shear stress difference sw � sw,1 2 sw,2 is positive. A
rigorous theoretical treatment of the Saffman-Taylor insta-
bility for a yield stress fluid is complex since the relation-
ship between the velocity and the pressure gradient, the
so-called Darcy’s law for Newtonian fluids, is no longer
linear. Recently, evidence for an effective Darcy’s law for
shear-thinning liquids in which the viscosity is replaced
by the shear-thinning viscosity has been obtained theo-
retically [10] and experimentally [15]. For the Herschel-
Bulkley model described above, it follows that, by analogy,
Darcy’s law for yield stress fluids can formally be written
as =p � sw�b � �1 1 f�U, b��sy�b, where f is a func-
tion such that f�U� ! 0 when the velocity U ! 0. It was
shown that approximate expressions for f may be found
from the expression for the discharge rate [11].

By using this effective Darcy’s law, a linear sta-
bility analysis of the flat interface can be performed.
It was demonstrated [11] that the dispersion equation
is in fact very similar to the Newtonian case. In the
Newtonian case the wavelength of maximum growth is
given by lm � 2p

p
gb2�mU [16], where mU�b � m �g

represents a characteristic viscous stress. For yield stress
fluids, the viscous stress should be replaced by the wall
shear stress sw . Neglecting the air viscosity (and thus
sw,2) the wavelength of maximum growth is then simply
found from the ratio of the capillary forces to the total
316
viscous forces, which now include the yield stress, and
follows as lm � 2p

p
3gb��2sw�.

This has a number of interesting consequences. The
result shows that the wavelength remains finite even at
vanishing velocities simply because sw contains the finite
yield stress. It also explains why for low velocities, for
which the yield stress dominates, the finger width, which
at least shortly after destabilization should correspond to
the wavelength of maximum growth, is independent of the
velocity. The other consequences are that the finger width
should scale as the square root of the plate spacing and be
independent of the channel width.

In order to test the predictions, the finger width was
measured varying the plate spacing b from 0.125 mm to
1 mm for channel widths of W � 2 cm and W � 4 cm,
respectively. The results in the yield stress regime are de-
picted in Fig. 4, where the average finger width w is given
as a function of

p
b. Indeed, the finger width shows the de-

pendence on the channel geometry predicted by the theory.
More quantitatively, one can obtain the yield stress from
the slope of the line, when equating sw to the yield stress
and identifying the finger width with lm�2. If these iden-
tifications are made, one obtains sy � 15.6 Pa, in good
agreement with the value sy � 16 6 2 Pa obtained inde-
pendently from the rheological measurements. The simple
theory thus does very well in describing the data.

To test the generality of the results, an oil in water
emulsion [17] was used as a second yield stress fluid.
Very similar behavior with respect to the gel is observed
(Fig. 4). The experimentally determined yield stress for
the emulsion is somewhat higher than that for the gel;
in qualitative agreement, lm is found to be somewhat
smaller. More quantitatively, from the slope, one finds
sy � 20 Pa, whereas the rheological measurements give
sy � 25 6 5 Pa. Note that the yield stress for the emul-
sion is more difficult to measure with regard to the gel due
to the higher viscosity of the latter.

For the viscous regime, at higher velocities, the vis-
cous stress overcomes the yield stress and the fluid should
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FIG. 4. Finger width versus

p
b for channel widths of

4 cm �≤� and 2 cm �±� for the gel and for the emulsion ���
for W � 4 cm.
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FIG. 5. Relative finger width as a function of Ca�W�b� for
channel widths of W � 4 �≤� and 2 cm �±� and plate spacings
of b � 0.125, 0.25, 0.5, 0.75, and 1 mm.

behave like an ordinary viscous fluid which exhibits shear
thinning. From Fig. 2, one observes that the finger width
l in this regime decreases with increasing finger velocity.
In addition, for high velocities, l turns out to be much
smaller than the classical limit l � 0.5. Similar results
have already been found for other shear-thinning fluids,
such as polymer solutions [15].

For Newtonian fluids, the control parameter allowing
one to rescale experiments for different fluids and as-
pect ratios of the Hele-Shaw cell onto a single, universal
curve is 1�B � Ca�W�b�2 [1]. This follows classically
from comparing the channel width W to lm: 1�B �
�2pW�lm�2. We have shown recently that for weakly
shear-thinning fluids the same rescaling can be applied,
provided the viscosity is replaced by the shear-thinning
viscosity [15]. However, for the gel, the power index n
of the Herschel-Bulkley model is found to be 0.38, which
corresponds to a rather strong shear-thinning behavior: the
results do not collapse onto a single curve. Surprisingly,
it is possible to obtain a very satisfactory data collapse by
scaling on Ca�W�b� rather than 1�B (Fig. 5). This shows
that either the dependence on Ca is stronger or the de-
pendence on W�b is weaker than for the Newtonian case.
Although we have been unable so far to find a satisfactory
explanation for this nevertheless convincing rescaling of
the data, it is worthwhile noting that due to the modifica-
tion of Darcy’s law the dependence of lm on b is weaker
for yield stress fluids, which leads to a modification of
1�B. However this cannot account completely for the scal-
ing, as the dependence on W is not modified. This suggests
that 3D effects may become important.

In conclusion, we have demonstrated that the Saffman-
Taylor instability is drastically modified in yield stress
fluids, leading to very branched patterns at low velocity,
where the yield stress plays an important role. The results
in the yield stress regime can be understood quantitatively
from a linear stability analysis. For higher velocities only
a single stable finger is observed. Fractal patterns also
observed in yield stress fluids [4–8] occur as secondary
instabilities at high speeds, for which the viscous stresses
dominate the yield stress: these are thus probably not re-
lated to the yield stress character of the fluid. The results
for the foam indicate that wall slip strongly influences the
instability, a point that is also very important if one wants
to compare results for different yield stress fluids.
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