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Stability of Global Monopoles Revisited
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We analyze the stability of global O�3� monopoles in the infinite cutoff (or scalar mass) limit. We ob-
tain the perturbation equations and prove that the spherically symmetric solution is classically stable (or
neutrally stable) to axially symmetric, square integrable, or power-law decay perturbations. Moreover,
we show that, in spite of the existence of a conserved topological charge, the energy barrier between the
monopole and the vacuum is finite even in the limit where the cutoff is taken to infinity. This feature is
specific of global monopoles and independent of the details of the scalar potential.
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Introduction.— Global monopoles have been investi-
gated for years as possible seeds for structure formation in
the Universe [1,2]. Although they appear to be ruled out by
the latest cosmological data [3], their appearance in con-
densed matter — and other —systems and their peculiar
properties make them worthy of investigation. These ob-
jects have divergent energy, due to the slow falloff of angu-
lar gradients in the fields, which has to be cut off at a
certain distance R (in practice, the distance to the nearest
monopole or antimonopole) and has two important conse-
quences, in particular for cosmology. First, the evolution of
a network of global monopoles is very different from that
of gauged monopoles, as long-range interactions enhance
annihilation to the extent of eliminating the overabun-
dance problem altogether [1]. Second, their gravitational
properties include a deficit solid angle [4], which makes
them rather exotic.

The stability of global O�3� monopoles has been the sub-
ject of some debate in the literature [5–7]. In this paper
we try to settle the issue by (a) analyzing the axial per-
turbation equations in the limit where the cutoff is taken
to infinity, and (b) proving that the energy barrier between
the monopole and the vacuum (meaning the extra energy
required by the monopole to reach an unstable configura-
tion that decays to the vacuum) is finite. It is somewhat
surprising for different topological sectors to be separated
by finite energy barriers, but in this case it is a consequence
of the scale invariance of gradient energy on two dimen-
sional surfaces (r � const), and therefore independent of
the details of the scalar potential.

The model.—We consider the simplest model that gives
rise to global monopoles, the O�3� model with Lagrangian

L �
1
2

≠mFa≠mFa 2
1
4

l�jFj2 2 h2�2, a � 1, 2, 3 .

(1)

Fa is a scalar triplet, jFj �
p

FaFa, and m � 0, 1, 2, 3.
The O�3� symmetry is spontaneously broken to O�2�,
leading to two Goldstone bosons and one scalar excita-
tion with mass ms �

p
2l h. The set of ground states is
0031-9007�00�85(15)�3091(4)$15.00
the two-sphere jFj � h and, since p2�S2� � Z, there
are field configurations with nontrivial topological charge.
One such configuration with unit winding is the spherically
symmetric monopole,

Fa � hf�r�
xa

r
, (2)

where f�0� � 0 and f�r ! `� � 1. Its asymptotic be-
havior is f�r ! 0� � ar, a � 0.5, and f�r ! `� �
1 2 1�r2 2 3�2r4, as can be seen from the equation of
motion of f�r�,

f 00 1
2
r

f 0 2
2
r2 f 2 f� f2 2 1� � 0 . (3)

The two parameters (h, l) appearing in the Lagrangian
can be absorbed by the rescaling Fa ! F̃a � Fa�h,
xm ! x̃m �

p
lh2 xm, which amounts to choosing h as

the unit of energy and the inverse scalar mass as the unit
of length (up to a numerical factor). Note, however, that
the energy of a configuration with nontrivial winding such
as (2) is (linearly) divergent with radius, due to the slow
falloff of angular gradients, and has to be cut off at r � R,
say. Unlike h and l, the (rescaled) cutoff is an important
parameter which could affect the dynamics of solutions
with nontrivial topology. Dropping tildes,

E �
Z R

0

1
2

≠mFa≠mFa 1
1
4

�jFj2 2 1�2. (4)

Since the energy diverges, Derrick’s theorem does not ap-
ply in this case, and in [7] it was shown that the global
monopole is stable towards radial rescalings. On the other
hand, the question of stability with respect to angular per-
turbations has led to some discussion in the literature after
Goldhaber [5] pointed out that the ansatz

F1 � F�r, u� sinū�r , u� cosw ,

F2 � F�r, u� sinū�r , u� sinw ,

F3 � F�r, u� cosū�r , u� ,

(5)

which describes axially symmetric deformations of the
spherical monopole (2), leads to the following expression
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for the energy after a change of variables y � ln tan�u�2�:

E �
Z 2p

0
dw

Z `

2`
dy

Z R

0
dr

1
2

�r1 1 r2 sech2� y�r2� ,

r1 � F2
y 1 F2�sin2�ū� 1 �ūy�2� ,

r2 � F2
r 1 F2�ūr�2 1

1
2

�F2 2 1�2,

(6)

with Fr � ≠rF, etc. The term in brackets in r1 is identical
to the energy of the sine-Gordon soliton, so translational
invariance in y implies that configurations with

F�r , y� � f�r�, tan�ū�r , y��2� � ey1j , j � const
(7)

have the same energy as (2) (which corresponds to j � 0).
On a given r � const shell, the effect of taking j ! ` is
to concentrate the angular gradients in an arbitrarily small
region around the North Pole. When the gradient energy
is inside a region of size comparable to the inverse scalar
mass, it is energetically favorable to “undo the knot” by
reducing the modulus of the scalar field to zero and climb-
ing over the top of the Mexican hat potential. Unwind-
ing is estimated to occur at a critical value of j (say j0)
whose dependence with r far from the core is logarith-
mic, j0 � lnr 1 const. Numerical simulation on individ-
ual shells closer to the core gives j0 � a0 1 b0 lnr with
slowly varying b0 � 1 and a0 � 21.3. Unwinding is ex-
pected if j�r� . j0�r�.

Estimation of the energy barrier.—As explained in
[6,7], the shift (7) creates a tension pulling the monopole
core, and the apparent unwinding (which starts in the inner
shells) is only a manifestation of the core’s translation.
In order to stop the motion of the core, we consider a
hybrid configuration such that the monopole core remains
unperturbed and the unwinding occurs in the outer shells.
This is achieved by taking j � 0 for, say, r , r1, a
stringlike configuration for r . r2, and some continuous
3092
interpolation in between. One such configuration [see
Fig. 1a] would be

F̂�r , y� � f�r�, ĵ�r� �

8<
:

0 r , r1 ,
c�1 2

r1

r � r1 , r , r2 ,
a 1 b ln�r� r2 , r ,

(8)

with a * a0, b * b0, and c given by continuity of ĵ�r�.
If the energy (i.e., mass) inside r2 is large enough

there will be no appreciable motion of the monopole
core (because the tension of the string is constant �4p).
For instance, simulations with r1 � 3, r2 � 6, b � 1
show different behavior depending on c: for c & 2.8
the core translates, but for c * 2.8 the unwinding hap-
pens far from the core, which remains fixed. In the latter
case, the decay of the string can also be understood as
a monopole-antimonopole pair creation with the new
monopole appearing at r � R and the antimonopole
appearing near r � r2. The equations solved in the simu-
lations were

�Fa 1 Fa�jFj2 2 1� 1 g �Fa � 0 , (9)

with a dissipative term added to make the integration
faster. Simulations using different g show no appreciable
difference. The equations were integrated using cylin-
drical coordinates (r, w, z) in a 2002 grid using explicit
Runge-Kutta method with step size control [8]. The out-
put can be seen in Fig. 1b, where the potential energy is
plotted at various times, confirming that the configuration
(8) is unstable and decays to the vacuum.

We will now show that the extra energy required to reach
this unstable configuration (8) from the spherical monopole
configuration (2) is finite.

Consider the set of configurations with F � f�r� and
j � j�r�. From (6) the difference between the energy
of any such configuration (E�j�) and the energy of the
FIG. 1. (a) Plot of the scalar field Fa in
the configuration given by Eq. (8) in the
text, for r1 � 3, r2 � 6, a � 0.9, b � 1.
The configuration is axially symmetric.
(b) The result of numerical integration us-
ing (a) as initial condition. Potential en-
ergy is shown in grey scale at different
times. After annihilation of the monopole-
antimonopole pair near z � 0, the system
fluctuates for some time until all the en-
ergy is radiated away (not shown; note the
longer time elapsed between t � 2.5 and
t � 4.5).
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spherically symmetric unperturbed monopole (E�0�) is

E�j� 2 E�0� �

∑Z r�

0
1

Z R

r�

∏
dr

3

∑
r2

2
f2�r�j2

r �r�I�j�r��
∏

,

I�j� �
Z 1`

2`
dy sech2� y� sech2� y 1 j�r�� .

(10)

I�j� is bell shaped: from a maximum value I�0� � 4�3,
it rapidly falls to zero for jjj . j� � 5 as �16�jjj 2

1� exp�22jjj�. r� is the radius at which j�r�� � j�. The
first integral is clearly finite. The second can be estimated
using the asymptotic form of I�j� and is negligible for
j � a 1 lnr even in the limit R ! `, where one gets
�16pe2aj�e2j� .

Moreover, there is a continuous path in configuration
space connecting the configurations (2) and (8) such that
E�j� 2 E�0� remains finite along the whole path: first
increase j in the outer shells r . r� using Goldhaber’s
deformation (jr � 0) until j reaches j�; then adjust the
radial dependence to match (8).

Thus, we have shown that the extra energy required by
the monopole (2) to go over the energy barrier and decay
to the vacuum is finite even as R ! `; moreover, since
the monopole energy grows with R, the ratio �E�ĵ� 2

E�0���E�0� ! 0 as R ! `.
Stability to small perturbations with axial symme-

try.—We now turn to the classical stability of (2) by
considering small perturbations parametrized by

F � f�r� 1 d�t, r , y� , (11)

tan�ū�2� � �1 1 j�t, r , y��ey . (12)

Neglecting quadratic terms gives sinū � sinu 1

j sinu cosu, cosū � cosu 2 j sin2u. Introducing
X � fj,

F1 � � f sinu 1 d sinu 1 X sinu cosu� cosw ,

F2 � � f sinu 1 d sinu 1 X sinu cosu� sinw ,

F3 � � f cosu 1 d cosu 2 X sin2u� ,

(13)

which shows that the correct boundary conditions are that
sinu�d 1 X cosu� should vanish on the z axis. Note that
d�0� and X�0� need not vanish. An infinitesimal transla-
tion of the monopole in the z direction corresponds to d �
2fr �r� cosu, X � f�r��r , and both fr�r� and f�r��r tend
to �0.5 as r ! 0 (see Fig. 2a). There is no zero mode
associated with global rotations since these have been fac-
tored out in the ansatz (5).

As usual, the perturbation equations

0 � r2�d 1 2d 1 r2�3f2 2 1�d 1 2Xy 2 4X tanhy ,

0 � sech2yr2�X 1 sech2y�r2� f2 2 1� 1 2�X
1 2 tanhyXy 2 2dy

(14)

reduce to an eigenvalue problem in v2 for perturbations of
the form d � eivtd̂�r, y�, X � eivtX̂�r , y�. Eigenfunc-
FIG. 2. The functions: (a) f�r��r, fr �r�; (b) V1�r�, V2�r�.

tions d̂, X̂ with negative eigenvalues v2 , 0 correspond
to instabilities. Dropping hats and defining u � tanhy,

R1d 1 ≠u��u2 2 1�≠ud� 2 2≠u��u2 2 1�X� � v2r2d ,

R2X 1 ≠2
u��u2 2 1�X� 2 2≠ud � v2r2X ,

(15)

where R1, R2 are radial operators (see Fig. 2b):

Ri � 2≠r �r2≠r� 1 Vi�r�, i � 1, 2 ,

V1�r� � r2�3f2�r� 2 1� 1 2 ,

V2�r� � r2� f2�r� 2 1� .

(16)

Using Legendre polynomials and changing variables:
x :� ≠u��1 2 u2�X� �

P
xl�r�Pl�u�, d �

P
dl�r�Pl�u�,

the equations for different values of l decouple, giving

R1Dl 1 x2Dl 1 2xxl � v2r2Dl , (17)

R2xl 1 x2xl 1 2xDl � v2r2xl , (18)

where we introduced x �
p

l�l 1 1� and Dl � xdl. In
order to get (18) we multiplied the X equation in (15) by
�1 2 u2� and differentiated with respect to u, so there may
be spurious solutions; in particular, l � 0 corresponds to
angular perturbations that are singular on the z axis. These
are not physical, and will be discarded. But if there is no
solution of Eqs. (17) and (18) with negative v2 there will
be no instability in the original problem (14).

Our task is to find the solution to Eqs. (17) and
(18) with the minimum value of v2 over all admis-
sible perturbations and all l $ 1. We know one l � 1
solution, the translational zero mode [D̃1 �

p
2 fr �r�,

x̃1 � 22f�r��r]. Goldhaber’s deformation [x1 � f�r�,
D1 � 0] is also l � 1 but is not a solution of Eqs. (17)
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and (18), and it can be shown that there are no instabilities
with x1�r ! `� � const.

Let us first consider normalizable perturbations. Note
that, for each l, Eqs. (17) and (18) can be obtained by
functional variation from

El �
Z

dr �r2�D2
r 1 x2

r � 1 �V1 1 x2�D2

1 �V2 1 x2�x2 1 4xDx�

� v2
Z

dr r2�D2 1 x2� . (19)
3094
The lowest value of v2 can be found minimizing El

over normalized functions,
R

dr r2�D2 1 x2� � 1 and
over all l $ 1. However, the minimum must be in the
l � 1 sector since, for all l . 1 and for given D, x ,
�El 2 E1� is a sum of squares with positive coefficients:

El 2 E1 �
Z

dr �Al,1�D 1 x�2 1 Al,2�D 2 x�2� ,

(20)

where Al,6 � �x2 2 2 6 2�x 2
p

2 ���2 . 0 for l . 1.
In order to investigate the l � 1 sector, we rewrite E1

using arbitrary functions G�r�, H�r�, and K�r�:
E1 �
Z `

0
dr

∑µ
rDr 1

G
r

D

∂2

1

µ
rxr 1

H
r

x

∂2

1 2
p

2

µ
D

K
1 Kx

∂2

1

µ
V1 1 2 2

2
p

2
K2 1 Gr 2

G2

r2

∂
x2

1

µ
V2 1 2 2 2

p
2 K2 1 Hr 2

H2

r2

∂
D2

∏
2 G�r�D2�r�j`0 1 H�r�x2�r�j`0 . (21)
Choosing G�r� � 2r2≠r lnD̃1, H�r� � 2r2≠r lnx̃1,
K�r�2 � 2D̃1�x̃1, the coefficients of D2 and x2 in
(21) vanish identically by virtue of (3). For large r , G
and H � r , thus, E1 $ 0 for all functions (D1, x1) that
decay faster than 1�

p
r as r ! `. This proves that all

normalizable perturbations have v2 $ 0. The above
argument and a host of numerical simulations strongly
suggest that non-normalizable perturbations are at best
compatible with v2 � 0, as can be verified directly from
the equations for perturbations that fall to zero like a
power of r , but in this case we have no analytic proof.

Discussion.— In this paper we have derived and ana-
lyzed the axial perturbation equations of O�3� monopoles
and proved that, contrary to statements in the literature,
O�3� monopoles are perturbatively stable (or neutrally
stable) to infinitesimal, axially symmetric, normalizable
(or power-law decay) perturbations. We have also proved
that the energy barrier between topological sectors is fi-
nite, irrespective of the details of the scalar potential. This
feature is specific of global monopoles; global vortices
in two dimensions, whose energy grows logarithmically
with radius, and gauge monopoles, whose energy is finite,
are separated from the vacuum by an energy barrier
growing linearly with the cutoff. But the energy of global
monopoles is dominated by two-dimensional (angular)
gradients far from the core, and these can be deformed
with no energy cost.

One would naively expect thermal fluctuations with
KT � E�j� 2 E�0� to cause the monopole to decay. As
far as we know, this effect is not seen in “cosmological”
numerical simulations of global monopole networks, but
perhaps this is not so surprising. First, we worked in
flat space. Second, the range of scales introduced by the
expansion of the Universe forces drastic approximations
on cosmological simulations; in particular, the sigma
model approximation, which is widely used, sets the field
on the vacuum manifold everywhere, so unwinding and
pair creation events are not resolved by the grid. Finally,
cosmological simulations do not include thermal effects,
and it has been shown that full thermal simulation across
the phase transition [9] gives qualitatively different results.
Our results provide further evidence that a more careful
analysis of global monopole networks may be required.
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