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Manifestation of Superfluidity in an Evolving Bose-Einstein Condensed Gas
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We study the generation of excitations due to an “impurity” (static perturbation) placed into an os-
cillating Bose-Einstein condensed gas in the time-dependent trapping field. It is shown that there are
two regions for the position of the local perturbation. In the first region the condensate flows around the
impurity without generation of excitations demonstrating superfluid properties. In the second region the
creation of excitations occurs, at least within a limited time interval, revealing destruction of superfluid-
ity. The phenomenon can be studied by measuring the damping of condensate oscillations at different

positions of the impurity.
PACS numbers: 03.75.Fi, 05.30.Jp

In studies of Bose-Einstein condensation in ultracold
gases, there has been outlined a new stage associated
with investigating superfluidity (SF) in such systems. This
problem is of specific interest since it is a question of SF of
a dilute gas. The first results in revealing a critical veloc-
ity have been obtained in [1]. At the same time in [2] the
creation of a vortex is demonstrated in a sophisticated ex-
periment with two condensates. Recently, direct creation
of vortices has been observed in a rotating condensate [3].

An interesting possibility for studying SF may be real-
ized in the observation of evolution of condensate accom-
panying time-dependent variations of the confining field.
For the most interesting case when a parabolic potential
keeps its shape, the scaling solutions found in [4-6] al-
low us to describe the evolution of condensate for arbi-
trary variations of the trap frequencies. The analysis of
solutions, in particular, given below, shows that during the
evolution there are space-time regions where the veloc-
ity v(7, t) of condensate exceeds the local speed of sound
c(r, 1), i.e., the local critical velocity for the SF system.
Simultaneously, there exists a spatial region where, on the
contrary, v(7,t) < c(7,t) for any time. In the absence
of external perturbations, the presence of the regions with
v(r,t) > c(7,t) does not result in itself in the irreversible
processes, and the oscillations of condensate do not decay
at a temperature 7 = 0.

However, provided an external perturbation is localized
in the region where v(7,t) > c(¥,t) even for a limited
time interval, generation of collective excitations of the
condensate takes place. Naturally, this results in the decay
of the oscillations of the condensate. At the same time,
if the perturbation is located in the region where always
v(F,1) < c(7,1), the gas in the presence of SF will flow
adiabatically about the local perturbation not creating ex-
citations. Thus, measuring the decay of oscillations of the
condensate under changing localization of perturbation,
we can display the SF properties of a Bose-Einstein con-
densed gas.

As found in [4], for the isotropic 2D parabolic potential
there is an exact scaling solution for arbitrary values of
the gas density n and initial trap frequency w( and an
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arbitrary dependence w(z). This makes a choice of the
trap geometry close to the cylindric one very attractive. In
this case, a static perturbation can be induced by the laser
beam parallel to the longitudinal cylindric axis and limited
in the transverse size. Shifting the beam axis in the radial
direction, one can change the localization of perturbation.

Below, we consider the evolution of the condensate in an
isotropic 2D parabolic potential with the time-dependent
frequency w(#) and determine the generation of excitations
under external static perturbation. The generalization for
the 3D case of the cylindric symmetry and extended per-
turbation unchanging along the longitudinal axis can be
performed easily.

Examining evolution of the 2D interacting Bose gas in
the time-dependent confining potential, we can employ
the general equation for the Heisenberg field operator of
atoms:

oW [_ h? A+ mw?(t)r?
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The only simplification in the equation is an assumption of
the local character of the interparticle interaction.

Let us introduce a scaling parameter b(f) and, corre-
spondingly, spatial and time variables p = 7/b, 7(1).

For the 2D case, let us represent the operator V¥ as

N 1
V(o) =, dpnexpli®n]l. @

Substituting (2) into (1) and using the results obtained in
[1], we find

O(r,t) = mr? — —. 3
(ret) = mr o ar ©)
Then the equation for operator ¥ (p, 7) reduces to
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The equation takes such form if we accept that b(¢) and
7(¢) are determined by the equations
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We put w(—) = wq in Egs. (4) and (5). Equation (5)
should be solved at the initial conditions of b(—x) =1,
b(—») = 0.

It follows from Eq. (4) that the problem in the p and
7 variables reduces to the solution of the equation for the
static parabolic potential of the initial frequency wg. Find-
ing a solution and deriving b(¢) and 7(¢) from (5), we ob-
tain a complete description for the space-time evolution at
an arbitrary variation of w(z).

Let us restrict our consideration with the case of zero
temperature. Then the ground state in the static potential
represents the condensate, and in Eq. (4) the operator Y
can be replaced by the macroscopic condensate wave func-
tion yo(p, 7) having a typical dependence on 7,

xo(p,7) = xo(ple #7/n. (6)

Here, w is the initial chemical potential and yo(p) is the
solution of the equation

K2 1
5 Bpxo + [—M + Emwépz + Uo)(g}/\/o =0.
(7

To describe excitations in the system, we introduce
operator ¥'(p,7). Let us write the initial operator ¥
as ¥ (p,7) = [xo(p) + ¥'(p,7)]e *#7/" and substitute it
into (4). Then we find the following for the equation lin-
earized in §'(p, 7):
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This equation determines excitations in the coordinates of
(p,7), and we can consider any problem in this reference
frame. However, keeping in mind the solution of the prob-
lem on creating excitations under a static perturbation, it
is more natural to investigate it in the laboratory reference
frame.

Let us rewrite Eq. (8) introducing new variables 7 and
t. For this purpose, we use the relations

a/i\// 28)?/ o ai//
S =bP -+ Fhb -, A =bAR
or ar PP oF pX X

We assume that the density of a gas is sufficiently large
and u > hw, i.e., the Thomas-Fermi approximation is
valid. Then we find the condensate density from Eq. (7)
[see (2)]:

2
no(7, 1) = X2 = U%(l - RZ(Z)) 9)

where R(t) = Rob(t),Ro = V2u/mwd-
As a result, in the laboratory reference frame Eq. (8)
reads
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Here
. b .
V=, g = Ugny(r,1). (11)

It is easy to see that the quantity ¥ is a local velocity of
the condensate. In fact, the total condensate wave function
equals

Wo(r,t) = %Xoexp[i(l)(r,t) - M}

h

Taking into account (3) and determining phase gradient,
we arrive at expression (11) for the velocity. Special at-
tention should be paid to the appearance of the Doppler
vpx' term in Eq. (10), p = (—ikV) being the operator of
momentum.

Note that, according to (9), the densityny(F, ) is propor-
tional to 5~ 2(t). Correspondingly, the correlation length
of & ~ n(;l/z changes in time as & = &yb(t), where &y =
li(2mUyng(0,0))~'/2. The size of the system R(r) changes
in the same manner. Thus a ratio of these quantities
&E(t)/R(r) = £o/Ro conserves for an arbitrary scale of
evolution.

The inequality &)/Ro < 1 is crucial for the Thomas-
Fermi approximation. So, if this approximation is valid
at the initial time, it remains valid for an arbitrary time.
Since £(1)/R(t) < 1, we have a quasiuniform problem at
any time, considering excitations of the £(r) = A << R(¢)
wavelengths. The scale of the uniform regions, accord-
ing to Eq. (10), changes with the typical time of fefr =~
b(1)/b(t). The well-defined excitations satisfy the inequal-
ity of wteer >> 1, 1.e., satisfy the quasistationary condition.

Let us consider the case of the fast transition from fre-
quency wg to w; = wo/B, B > 1. In this case, the solu-
tion of Eq. (5) yields

12)

b2(t) = %(32 +1) — %(32 — 1cos2wit. (13)

Hence,

wi
22
As we will see below, the excitations of A ~ & give the
main contribution into the damping. The energy of these

excitations is of the order of Uyng(0,7) = u/b*(t) and,
correspondingly,

(B% — 1) sin2w;t. (14)

v=r

2u B
hwg (,32 - 1) sin2wq t '

Wleff =

It is clear that the wfer > 1 condition holds if
2u/hwg > B. The last inequality can easily be fulfilled.
Thus, we can seek for the solution of Eq. (10) within the
quasiuniform and quasistationary approximation.

Let us introduce a typical representation for operator ¥/,
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&'/b =" expliki)a; , (15)
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where aj is the annihilation operator of a particle. We
employ the known Bogoliubov transformation, e.g., [7],
for the operator aj:

ap = uphy — v, (16)

where b and b; are the creation and annihilation opera-
tors of collective Bose excitations. As a result, the solution
of Eq. (10) gives the excitation spectrum,

8,;=Iil_<)z7+é,;, g = E]%—gz,
h2k2 (17)
Eg=—— +g.
k m 8

The expression for the coefficients of the transformation is
given by

5 1 (E,; ) 5 1 (E,; )
S = — —+ L= — | = — .
uz 25 1), Vs 2 \5; 1 (18)

Let an external perturbation of a size of about d <K Ry
and localized near 7 = 7, be described by an effective
interaction B(7 — 7,). The Hamiltonian of the interaction
of the gas with the perturbation has the form [see Eq. (2)]

Hiyy = d’r y T (F,0OBGF — PR (1)

1
b2
Selecting terms corresponding to the single-particle exci-
tations, we have

1 N - R -
Hy = 2 f d*rlxo(F,1)B(F — rp)j//(r,t) + Hec.].
(19)

Let us transform this Hamiltonian, using (15), (16), and

the value of xo = by/no(Fp, 1):
Hine = [no(7p. 1) . Bie™[ug = vyl (b + b7p).
k

(20)

If we take into account Eq. (17), the probability per unit
time of creating excitations equals (7 = 0)

27 R d*k - >,
W= 71’10(7‘},,2‘) W(Bk)2[uk —vk]zé(sk + nkv).
(21)
In accordance with Eq. (18), (uy — vp)* =

R2k?/2m&y.
yields

[dgo S(hkv cosp + &) =

Integration over the angles in Eq. (21)

2001 — (8 /hikv))
hikv1 — (8¢/hkv)?’

where 8(x) = 1 forx = 0 and #(x) = O for x < 0. Then

W= no(rp, 1) f dleklzlf—z 0(1 — (&¢/hkv))

2mvm Ex /1 — (E/hkv)?
(22

As follows from this expression, creation of an excita-
tion with the wave vector k occurs provided that v >
&/ hk, ie., provided that the familiar Landau criterium
holds. The generation of excitations is completely absent if
v(7p, 1) < c(Fp,1).

The local velocity of sound equals [see (17)]

. _ g(?,t)_& B r2 1/2
0=y, ‘bm(l R2<z>) ’

where ¢y = +/u/m. Taking into account the local magni-
tude of the gas velocity (14) and expression (13), we have

_ vt _ 29200 — DB - b,
A B - )

b —m),
(23)

where 7 = r,/Ro. For 1 < n < B, the dependence of
a on b?(t) is a monotonically decreasing function with the
inevitably existing region where the generation of excita-
tions (& > 1) takes place. If 1 < n < B, then by, = 7,
binax = ,8(1 - 1/47]2)-

If 7 <1, the value @ as a function of b? has a
maximum. Calculating «,, at this point, we can verify
that the generation of excitations does not appear in the
whole region of r, < Ry if 8 < V2. At the same time,
the generation is absent at r, < Ro/ V2 for an arbitrary
value of 3.

Suppose that r, > Ry, and let us calculate an integral
in Eq. (22). The values of k are limited by the condition
which follows from the equality &, = kv,

2
ke = 2 Jv2 — 2. (24)

h

In the 2D case, the effective vertex By in the interaction
Hamiltonian (20) at k.d << 1 can be represented as

©

k = ks,

B
B = o : (25)
1 + (mBy ' /mh?)In(1/kd)
where Bio) is the Fourier transform of the bare potential,

d being a length of the order of the size of perturbation
potential in the 2D case. If this value is large enough, we
have

mh?
mIn(1/kd)’
i.e., it has only a weak logarithmic dependence on k. In
the opposite case k+d > 1 Eqgs. (23) and (26) are not valid
and the calculation of the transition amplitude requires a
knowledge of the concrete form of the interaction potential.
The most contribution into the integral (22) is given by the
interval adjoined the upper limit k.. We can approximately
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take a factor of |By|?> out of the integral, putting k. into
the argument of the logarithm. Next, integral (22) can be
calculated exactly as an integral over x = (&;/Avk) within
the limits (c/v, 1):

Fp, 1) (Bs)? 2
W = M[l _ —arcsin£:|0<l _ £>,
h T v v
(27)

where Bx. = By,. Let us determine the total number of ex-
citations created for a period of the condensate oscillations
in the case of 1 < 1 K B:

123
I=2] dtw. 28)

1

The time ¢; determines the moment when the
boundary of the gas front reaches the point r,. This
value is found from the condition r, = b(;)Ry.
It follows from Eq.(13) that b52%(¢;) = 1 + (wot)?
and t; = /n? — 1/wy < 1/w;. The time t,, found
from the condition @ = 1 (23), equals t, = [7/2 —
1/(\27)])/w,. Substituting Eq. (9) for the density into
(27), one can see that the integral over time is dominated
by the lower limit. From the physical point of view, this
is associated with the fact that the condensate density at
point r, has a maximum during evolution just for t ~ #;.
It follows from (23) that ¢/v = 1/(~/2 7). Under this
condition, the factor in the square brackets in Eq. (27) is
of the order of unity. After integration, we find

1 1
I = — mno(0,0) |B.|* —. (29)
h nwo

Substituting (26) into (29) and introducing the total number
of particles N = % #Rg no(0, 0) instead of n¢(0, 0), we find

mhwg N rp
I = s = —, 30
on W/kd "R G0

In the present case we have put fiwg/u << 1. This
means that the number of excitations / and also the number
of particles escaped from the condensate for the oscillation
period are small compared with N.

The total energy of the excitations generated during one
oscillation period can be estimated as un?l. Since the
energy of the oscillating condensate is about wN, the rela-
tive energy loss for a period at » = 1 and 8 > 1 approxi-
mately equals 1%I/N.

Treating a realistic problem in the quasi-2D case
corresponding to the cylindric symmetry of the field
configuration with the transverse parabolic potential and
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perturbation independent of the longitudinal coordinates,
we arrive at the result of (30) with N equal to the total 3D
number of particles. The cylindric symmetry of pertur-
bation results in creating collective excitations of k, = 0
alone. The problem of scattering proves to be purely two
dimensional and we arrive at Egs. (26) and (30). The

quantities Bio) and By remain as 2D Fourier components.
Note that, if the laser beam parallel to the cylindric axis
is used as a static perturbation (possibly, with the light
sheets at the edges), an influence of the regions where the
beam enters and leaves the condensate is unessential.

In conclusion, we have investigated the generation
of excitations in the oscillating condensate in a time-
dependent parabolic trap at the presence of a static local
perturbation. We have revealed the existence of two space
regions for the position of an “impurity.” In the first region
of r, < Ro/ /2, the generation of excitations is absent at
any scale of oscillations. In the second one of r, > R,
the generation is realized inevitably for an arbitrary set of
parameters and we have found the generation rate. The
results for the first region are a direct consequence of SF
of condensate. For any position in the second region,
there is a finite time interval when the local velocity of
the condensate proves to be larger than the local velocity
of sound, entailing violation of SF. Measurements of
the damping of the condensate oscillations at different
positions of the perturbation opens a possibility to study
the manifestation of SF in the evolving condensate.
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