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Optical Potentials for Inelastic Scattering from Many-Body Targets
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The standard text book Green’s function possesses a self-energy that is known to be an optical potential
for elastic scattering. The introduction of an optical potential reduces the complex many-body scattering
problem into a tractable one-body problem. In this paper inelastic Green’s functions are introduced and
discussed which possess self-energies that are optical potentials for inelastic scattering. If the projectile
is indistinguishable from particles comprising the target, intriguing aspects arise even for noninteracting
particles.

PACS numbers: 03.65.Nk, 34.10.+x, 34.80.–i
To investigate elastic scattering of a projectile from a
many-body target in its ground state j0�, common text
books introduce a quantity called one-particle Green’s
function (GF) [1–4]

gpq�t, t0� � g1
pq 1 g2

pq

� 2iu�t 2 t0� �0jbp�t�by
q �t0� j0�

1 iu�t0 2 t� �0jby
q �t0�bp�t� j0� , (1)

where bp and by
p denote annihilation and creation opera-

tors for projectiles in projectile one-particle states wp . This
GF is subject to the well-known Dyson equation, which,
after Fourier transformation from time to energy space,
reads in matrix notation [1–4]

g�v� � g�0��v� 1 g�0��v�s �v�g�v� . (2)

Here g0 denotes the free GF computed without particle-
particle interaction. Equation (2) connects the GF with its
kernel s �v�, which is called self-energy. Among the many
interesting properties of the self-energy is that it represents
an effective energy-dependent one-particle potential which
is an exact optical potential for elastic scattering [5]; i.e.,
scattering calculations performed with the one-particle po-
tential s �v� provide exact elastic scattering data on the
many-body system under investigation.

The construction of optical potentials for elastic scatter-
ing and their application has been a vivid field of research
in several areas (see, e.g., Refs. [6–9]). Inelastic processes
play a central role in nature and there are ample experi-
mental data on various inelastic cross sections. Although
the usefulness of an available optical potential for com-
puting inelastic scattering is self-evident, the problem of
constructing one or even proving its existence has resisted
solution. It is the goal of this paper to investigate possible
solutions to the problem.

Before turning to the optical potential for inelastic scat-
tering it is illuminating to briefly investigate the standard
GF (1). By remembering the Heisenberg representation
for operators, b�t� � eiHtbe2iHt , the GF is readily inter-
preted. For convenience we choose the ground state en-
ergy of the target as the origin of the energy scale and
put t � t 2 t0. At time zero a particle is attached to the
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ground state of the target. This compound state propa-
gates as usual via the total Hamiltonian H of the system:
e2iHtby

q j0�. At time t . 0 we ask for the probability of
finding by

p j0� in this compound state. Apart from a triv-
ial prefactor 2i, this autocorrelation function is exactly
the advanced-particle [10] GF, g1, in Eq. (1). From this
interpretation it is clear that g1 describes elastic scatter-
ing. However, g1 is not invertible and cannot be used
to construct a well-behaved optical potential [6,11]. To
remedy the situation the retarded-hole GF, g2, is needed.
This quantity is the autocorrelation function of a hole state
e1iHtbpj0� which can be interpreted as a particle go-
ing backward in time [1]. g2 is also not invertible, but
g � g1 1 g2 is invertible because of the anticommuta-
tor relation bpby

q 1 by
q bp � dpq for fermions. By using

a slight redefinition of g, analogous results are obtained
for bosons [1].

Let us briefly compare different projectile particles. If
the projectile is distinguishable from the particles compos-
ing the target, a situation encountered in, e.g., the scattering
of a positron from atoms and molecules, the GF simpli-
fies [12]. The retarded-hole GF vanishes since one cannot
annihilate a positron in the target. On the other hand, if
the projectile is indistinguishable from particles compris-
ing the target, both the retarded-hole and advanced-particle
GFs are needed to accommodate the fermion anticommu-
tator relation and determine a well-behaved, i.e., nonsingu-
lar, optical potential. The presence of both a particle state
and a hole state appropriately propagating in time reflects
the particle-hole symmetry inherent in the GF and hence
also in the optical potential of indistinguishable particles.

The above discussion in terms of propagating particle
and hole states or, equivalently, multiparticle wave packets
straightforwardly leads to the definition of GFs for inelastic
processes. At time zero a particle is attached to an arbitrary
state jM� of the target and this wave packet propagates in
time as e2iHtby

q jM�. A set of advanced-particle GFs is
obtained by asking for the probabilities of finding by

p jN�
in the wave packet, i.e., by computing cross-correlation
functions. Analogously, the cross-correlation functions of
the hole states e1iHtbpjM� determine the retarded-hole
© 2000 The American Physical Society



VOLUME 85, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 9 OCTOBER 2000
GFs. The results read

G�N ,M�
pq �t, t0� � G1�N ,M�

pq 1 G2�N ,M�
pq ,

G1�N ,M�
pq � 2iu�t 2 t0� �Njbp�t�by

q �t0� jM�
3 exp�iF1�N ,M��t, t0��, (3)

G2�N ,M�
pq � 1iu�t0 2 t� �Njby

q �t0�bp�t� jM�
3 exp�iF2�N ,M��t, t0�� .

Particular attention should be paid to the phases F6�t, t0�
which are time dependent and different for the advanced-
particle and retarded-hole GF:

F1�N ,M��t, t0� � F2�N ,M��t0, t� � 2E�N�t 1 E�M�t0.
(4)

Note that F2�t, t0� is obtained from F1�t, t0� by inter-
changing t and t0. E�N� denotes the energy of the target in
the state jN�.

For obvious reasons we shall call the GF in (1) and (3)
the elastic and inelastic GF, respectively. By construction
the inelastic GF is time-translational invariant as is the
elastic one. Its Fourier transform into energy space reads

G�N ,M�
pq �v� �

X

s

�N jbpjs� �sjby
q jM�

v 2 E
�s�
n11

1
X

r

�Njby
q jr� �rjbpjM�

v 1 E
�r�
n21

, (5)

where js� and E
�s�
n11 are the eigenstates and energies of the

target with one additional particle, and jr� and E
�r�
n21 are

the corresponding quantities of the target with one particle
less, i.e., of the ionized target. In principle, all of the
inelastic GFs, G�N ,M�, possess the same poles. By noting
that G�0,0�

pq � gpq, it is obvious that these poles coincide
with those of the elastic GF. From a practical point of
view this is a very valuable property since no additional
poles must be computed for describing inelastic processes.

It is convenient to view G�N ,M�
pq as matrix elements of a

supermatrix G in a double index space, one characterizing
the projectile and the other the target. In other words, the
pairs �p, N� and �q, M� are the indices of the supermatrix
G. In complete analogy to (2) this supermatrix fulfills a
generalized Dyson equation

G�v� � G�0��v� 1 G�0��v�S�v�G�v� , (6)

with a self-energy S�v� as a kernel and a free GF, G�0��v�.
The target states jN� define the scattering channels. We
may define G�v� to include as many channels as desired
by numbering the channels and setting N , M # K , where
K can range from zero to infinity. K � 0 implies that
only elastic scattering from the target ground state is con-
sidered; i.e., G�v� comprises only the elastic GF, g�v�.
We stress that the self-energy S�v� of the inelastic GF is
an exact optical potential for inelastic scattering if the free
GF is chosen appropriately [13]. The effect of all inelastic
channels N , M . K is absorbed into this exact potential.
One choice of the free GF is that G�0��v� takes on the same
appearance as for a projectile distinguishable from the tar-
get’s particles [12]:

G�0� �N ,M�
pq �v� �

dpqdNM

�v 2 ep 2 E�N��
, (7)

where ep �
p2

2 denotes the energy of the projectile with
momentum p. Note that the free elastic GF in (2) is given
by (7) for N � M � 0.

While the free elastic GF, g�0��v�, entering the Dyson
equation (2) is identical with the computed GF neglecting
the interaction between all particles, this is surprisingly
not the case for the free inelastic GF. Without any in-
teraction H � H0 �

P
k ekb

y
k bk , and the states and ener-

gies appearing in (5) become Slater determinants and sums
over one-particle energies ek . It is rather straightforward
to show that G�N ,M�

pq �v� coincides with G�0� �N ,M�
pq �v� for

N � M, but not for N fi M, where the former quantity
does not vanish. This nondiagonal structure of the inelastic
GF for noninteracting particles has striking consequences:
the self-energy S�v� does not vanish, giving rise to a non-
vanishing optical potential for inelastic scattering. This
potential consists of a static S�`�, i.e., energy indepen-
dent, and a dynamic, i.e., energy dependent, term. The
static term has a simple appearance,

S�N ,M�
pq �`� � 2�Njby

q bpjM� �E�N� 1 E�M�� , (8)

and the expression for the dynamic term is more involved
and will be given elsewhere [13]. Both terms depend only
on target one-particle densities and energies and disappear
for the elastic channel N � M � 0 (remember that the
target ground state has been chosen as the zero of the
energy scale).

It is indeed surprising that noninteracting particles do
have an obviously nonvanishing scattering potential. Is
there a scattering cross section for the scattering of non-
interacting particles? The answer is clearly no (see below
for proof). Let us consider the scattering of an electron
from an atom with n electrons. After the scattering event,
one measures an electron and implicitly assumes that it is
the scattered projectile. However, one cannot tell which of
the n 1 1 electrons has been measured. The scattering po-
tential is the result of the particles being indistinguishable.
In addition, we have shown that one can choose a single
channel (here the ground state) for which the elastic opti-
cal potential vanishes. Equation (8) implies static coupling
between the elastic and inelastic channels. To compensate
for this coupling, i.e., to lead to a vanishing elastic optical
potential s [see (2)], the inelastic potential must contain
dynamical terms in addition to the static terms [(8)].

The inelastic optical potential of the GF in (3) and (4)
derived above is not straightforward to evaluate for non-
interacting particles and even more so for interacting ones.
Can we redefine the GF such that the optical potential van-
ishes for noninteracting particles and is still an exact po-
tential in the general case? The answer is yes. To prove
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this statement it is helpful to note that optical potentials are
not unique quantities, i.e., there are different choices of op-
tical potentials which lead exactly to the same scattering S
matrix [6,8]. Consequently, it is a legitimate task to search
for another optical potential which gives rise to the same
physics, but exhibits the desired appearance. To this end
we have to recall that above we have imposed particle-hole
symmetry on the inelastic GF in analogy to that inherent in
the standard textbook elastic GF. By appropriately break-
ing this symmetry, we can accomplish our goal. Since the
advanced-particle GF, G1, is responsible for the scattering,
we have to leave it unchanged [14]. Hence it is G2 which
must be redefined. We leave this retarded-hole GF as is and
only enforce on it the phase of the advanced-particle one,
i.e., we now choose [in Eq. (3)] F2 to be identical to F1

[see Eq. (4)]. It should be stressed that this choice of phase
maintains the time-translational invariance of the GF. At
first sight it might be surprising that a change of phase can
have a relevant impact. A closer look reveals, however,
that this phase changes substantially the pole structure of
G2 in energy space, which now reads

G2�N ,M�
pq �v� �

X

r

�N jby
q jr� �rjbpjM�

v 1 E
�r�
n21 2 E�N� 2 E�M�

. (9)

Obviously, the number of poles of G2 has markedly grown
and now depends on the channels N and M.

The redefined GF fulfills a generalized Dyson equation
(6) with S again being an exact optical potential for in-
elastic scattering. The free GF, G�0�, is again that given in
(7). However, in contrast to the situation elaborated above,
this G�0� is now identical with the full GF, G, computed for
noninteracting particles. In short, the new inelastic opti-
cal potential vanishes for noninteracting particles. We pay
for violating the particle-hole symmetry by the substantial
increase of the number of poles in the retarded-hole GF,
which makes practical calculations more cumbersome.

We would like to mention that the redefined, i.e.,
particle-hole symmetry-broken inelastic GF is amenable
to a systematic theoretical evaluation [13]. The resulting
inelastic optical potential reads, in matrix notation,

S�v� � W 1 Vr 1
1
4 VyR�v�V . (10)

The static term, S�`� � W 1 Vr, contains the projectile-
nuclei interaction W and the electrostatic and exchange
interaction V of the projectile with the correlated one-
particle densities r of the target [see (8)]. The dynamic
term is at least of second order in the particle-particle
interaction. The inelastic response function R�v� depends
on the number of channels to be explicitly considered.
It fulfills an equation of motion which can be exploited.
Details will be given elsewhere [13].

It is concluded that optical potentials for inelastic scat-
tering represent an intricate and intriguing problem when
the projectile is indistinguishable from particles compris-
ing the many-body target. Maintaining the particle-hole
3074
symmetry inherent in the elastic standard textbook optical
potential also in the inelastic potential leads to a nonvan-
ishing potential even for noninteracting particles. The cor-
responding GF has a particularly simple appearance, but
its optical potential is difficult to evaluate. For interact-
ing particles this evaluation is still an open problem. By
appropriately violating the particle-hole symmetry, we en-
counter a GF which gives rise to an inelastic optical po-
tential which vanishes for noninteracting particles and can
be evaluated theoretically.
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