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We investigate the adiabatic evolution of a set of nondegenerate eigenstates of a parametrized
Hamiltonian. Their relative phase change can be related to geometric measurable quantities that extend
the familiar concept of Berry phase to the evolution of more than one state. We present several physical
systems where these concepts can be applied, including an experiment on microwave cavities for which
off-diagonal phases can be determined from published data.

PACS numbers: 03.65.Bz
Consider the adiabatic evolution of a set of nondegen-
erate normalized eigenstates jci�s�� of a parametrized
Hamiltonian H�s�. The idea that, with a suitable defi-
nition, the phase of the scalar product �cj�s1� jcj�s2��
contains a geometric, measurable contribution dates back
to Pancharatnam’s pioneering work [1]. In particular,
when s1 � s2 and the state jcj�s�� is transported adiabati-
cally along a closed loop, the existence of a nontrivial
phase factor was discovered and put on a firm basis by
Berry [2]. Since then, considerable work has been de-
voted to interpretation [3–7], generalization [8–13], and
experimental determination [14–18] of these geometric
phase factors. Surprisingly, for s1 fi s2, the phase relation
of �cj�s1� jck�s2�� between two different eigenstates has
not been equally well investigated so far [19].

This is even more surprising if one considers that, for
some pair of points s1 and s2, it may occur that jcj�s2�� �
eiajcj�s1�� (k fi j). This implies that both scalar products
�cj�s1� jcj�s2�� and �ck�s1� jck�s2�� vanish, and, as well
known, the usual Pancharatnam-Berry phase on any path
connecting s1 to s2 is undefined for the states k and j. The
only phase information left is thus contained in the cross
scalar products �cj�s1� jck�s2��.

In this Letter we determine the measurable and geo-
metric phase factors associated with the off-diagonal ma-
trix elements �cj�s1� jck�s2�� of the operator describing
the evolution along a general open path in the parameter
space that connect s1 to s2. We find a set of independent
off-diagonal phase factors that exhaust the geometrical
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phase information carried by the basis of eigenstates along
the path. Analogously to the familiar Berry phase, the
value of these phases depend on the presence of degen-
eracies of the energy levels in the parameters’ space. The
formalism is then applied to an experiment on quantum
billiards [17], where the off-diagonal phase factors can be
extracted directly from published experimental data.

In order to introduce the off-diagonal geometric phases,
it is convenient to consider the usual definition of the geo-
metric phase of one normalized state jcj�s�� in terms of
parallel transport [2,4,8,9]. Given any path G that joins s1
to s2, the state parallel-transported along it is defined by

jc
k
j �s2�� � exp

(
2

Z
G

ds ? �cj�s� j=scj�s��

)
jcj�s2�� .

(1)

This fixes the phase of the state along the path in the unique
way satisfying �ck

j �s� jck
j �s 1 d�� � 1 1 O�d2� for d !

0, i.e., having maximal projection on the “previous” state.
The geometric phase factor is then defined simply in terms
of the scalar product along the parallel evolution:

gG
j � F�UG

jj� � F��ck
j �s1� jck

j �s2��� , (2)

where F�z� � z�jzj for complex z fi 0. g
G
j is univocally

determined by the sequence Gj of states jcj�s��, with s
varying along G. Indeed, g

G
j is unchanged by a local

“gauge” transformation,
© 2000 The American Physical Society 3067



VOLUME 85, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 9 OCTOBER 2000
jcj�s�� ! jcj�s�� exp�iwj�s�� , (3)

and by any reparametrization of the sequence of states Gj .
It is thus a geometric, measurable quantity.

In a similar way, we define [20] the phase factors as-
sociated with the off-diagonal elements of the parallel-
evolution operator UG:

sG
jk � F�UG

jk� � F��ck
j �s1� jck

j �s2��� . (4)

Liue g
G
j , the phase factor s

G
jk is independent of the path

parametrization. However, s
G
jk depends on the relative

phase of the two vectors jcj� and jck� at s1. Indeed, under
the gauge transformation (3), s

G
jk transforms as follows:

sG
jk ! sG

jk expi�wk�s1� 2 wj�s1�� . (5)

This shows that s
G
jk is arbitrary, thus nonmeasurable. In

order to define a gauge-invariant quantity, we combine two
s’s in the following product:

gG
jk � sG

jksG
kj . (6)

This new phase factor g
G
jk is determined uniquely by the

trajectories Gj and Gk of jcj� and jck� in the Hilbert space.
The finding of the measurable geometric quantity g

G
jk is the

central result of this Letter.
A simple geometric interpretation for g

G
jk can be ob-

tained in analogy with that for the Pancharatnam phase.
Consider the path of state j in the space of rays (where
two states differing only for a complex factor are identi-
fied). If jcj�s1�� is not orthogonal to jcj�s2��, there exists a
unique geodesic path Gjj going from jcj�s2�� to jcj�s1��,
along which the geometric phase factor is unity. Then,
trivially, the open-path geometric factor g

G
j equals the

phase factor on the circuit composed by Gj and Gjj (see
Fig. 1) [9,11]. Once reduced to a closed path, using
Stokes’ theorem, one can write g

G
j in terms of the integral

of Berry’s local-gauge-invariant two-form on any surface
Sj is bounded by Gj 1 Gjj [2,9,12].

Consider now two states j and k evolving along Gj and
Gk in the space of rays. We generate all possible oriented

FIG. 1. States jcj�s�� and jck�s�� follow the (solid) paths Gj
and Gk along the evolution in rays space. Geodesics Gjj ,
Gkk , Gjk , and Gkj (dashed) lead back from the evolved states
jcj�s2�� jck�s2�� to the initial ones jcj�s1�� jck�s1��. Integra-
tion of Berry’s two-form over the shaded surface Sjk yields the
off-diagonal phase g

G
jk .
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loops by connecting the extremal points with geodesics.
As Fig. 1 shows, only the three loops Gj 1 Gjj , Gk 1

Gkk , and Gj 1 Gjk 1 Gk 1 Gkj can be generated. The
first two loops give the usual phase factors g

G
j and g

G
k ,

while the third one corresponds to g
G
jk . In this way, g

G
jk can

be calculated, in analogy to g
G
j , as the integral of Berry’s

two-form over a surface Sjk bounded by this four-legs loop.
The complementarity of g

G
jk and g

G
j is evident from this

geometric picture. In complete analogy with the usual
Berry phase, this expression in terms of a surface integral
also proves the sensitivity of g

G
jk to the presence of degen-

eracies of the two energy level i and j in the parametric
Hamiltonian associated with the above paths. However,
given the open path G and the energy levels involved, there
is no general rule to determine a closed loop in parameter’s
space entangled with a degenerate submanifold. Whenever
this loop can be found, g

G
jk is a direct probe of the presence

and position of degeneracies.
The simplest system to illustrate the concept of off-

diagonal geometric phase is a spin- 1
2 aligned to a slowly

rotating magnetic field B in (say) the xz plane. The polar
angle u of B parametrizes a circular path in the two-
dimensional space of the magnetic fields. For any value
of u, the columns of the matrix

U�u� �

0@ cosu

2 sin u

2

2 sinu

2 cosu

2

1A (7)

represent the parallel-transported eigenvectors jcj�u��
on the initial basis jc1�0�� � j#�, jc2�0�� � j"�. Thus,
the familiar Pancharatnam-Berry phase factor of the
state jcj�u�� evolving from u � 0 to uf is given by
the diagonal matrix element gj�uf� � F���Ujj�uf���� 3

F��cj�0�� jcj�uf���. The single off-diagonal term is
g12 � F�sinuf�2�F�2 sinuf�2� � 21 for any uf fi

0, 2p. For generic u, g1, g2, and g12 are all equally
important. For u � p , g12 carries all the geometric phase
contents of the eigenstates, while g1 and g2 are undefined.
At u � 2p the roles are exchanged. In this sense, the
off-diagonal phase factor g12 constitutes the counterpart
of gj , when the latter is undefined.

Interference experiments [18] have measured the non-
cyclic Pancharatnam-Berry phases gj in the spin- 1

2 system.
In a similar way, one can envisage a spin-rotation experi-
ment to measure by interference s12 and s21 for an arbi-
trary fixed gauge at the starting point. The dependence on
the gauge chosen cancels out in the product g12, which, for
this simple system, must equal 21 for any rotation angle
u fi 2p. Essentially any experiment [5,16,18] sensitive to
open-path diagonal geometric phases can be generalized to
observe off-diagonal phases. In systems of larger dimen-
sionality, several off-diagonal phase factors can be defined,
and they may assume different values on different paths.

The definition (6) of the off-diagonal phase factors
gG can be generalized to the simultaneous evolution of
more than two orthonormal states. Consider, for example,
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n orthonormal eigenstates jcj�s�� (ordered by increasing
energy) of a parametrized Hermitian Hamiltonian matrix
H�s�, representing a physical system. Observing the
effect (5) of a gauge change on the s

G
jk phase factors, we

note that any cyclic product of s’s is gauge invariant. It
is then natural to generalize Eq. (6) by defining

g
�l�G
j1j2j3...jl

� sG
j1j2

sG
j2j3

· · · sG
jl21jl

sG
jlj1

. (8)

For l � 1, Eq. (8) reduces to the familiar definition (2)
of the Pancharatnam-Berry diagonal phase factor g

G
j �

g
�1�G
j � s

G
jj . The two-indexes g

�2�G
jk phase factors coin-

cide with those introduced by Eq. (6). Larger l describe
more complex phase relations among off-diagonal compo-
nents of the eigenstates at the end points of G. The same
geometrical construction of a closed path done for g�2� ex-
tends to g�l� with l . 2.

We note that any cyclic permutation of all the indexes
j1j2j3 . . . jl is immaterial. Moreover, if one index is re-
peated, the associated g�l� can be decomposed into the
product g�l1�g�l2�’s with l1 1 l2 � l. We can thus reduce
to consider the g�l�with no repeated indexes, which means,
in particular, l # n.

One can readily verify that the number of g�l�’s left
grows with n faster than n2. Since n2 is the number of
the constituent sjk’s, not all the g�l�’s can be independent.
We shall now find a complete set of independent g�l�’s,
under the condition that UG

jk fi 0 for all j and k. Clearly,

the n Pancharatnam-Berry diagonal phase factors g
�1�
j are

all independent, since any diagonal sjj enters only g
�1�
j .

On the other hand, the off-diagonal g�l�’s are interrelated
by the following exact equalities [they can be verified sub-
stituting explicitly the definition (8)]:

g
�l�
i	 j
k	m
 � g

�l0�
i	 j
kg

�l00�
k	m
ig

�2��

ik �l $ 4� , (9)

g
�3�
jkmg

�3�
jmk � g

�2�
jk g

�2�
kmg

�2�
jm , (10)

g
�3�
ijmg

�2��

mj g
�3�
jkm � g

�3�
ijkg

�2��

ki g
�3�
ikm . (11)

In Eq. (9), 	 j
 indicates a set of one or more indexes, and
l0, l00 �,l� count the indexes in the corresponding g. Com-
bining relations (9)–(11), any g�l�’s may be expressed in
terms of three categories: the n diagonal phases g

�1�
j , the

n�n 2 1��2 quadratic g
�2�
j,k’s, and the �n 2 1� �n 2 2��2

cubic g
�3�
1,j,k . These n2 2 n 1 1 factors are indeed func-

tionally independent combinations of the s’s: we verified
that the Jacobian determinant j≠g	 j
�≠skmj is nonzero.
The number of independent phases can be easily under-
stood: it amounts to the n2 phases of UG

jk minus the arbi-
trary n 2 1 relative phases among the n eigenstates at a
given point s.

We restrict now the particular case of a path joining a
pair of points sP

1 sP
2 such that the n eigenstates at the final

point are a permutation P of the initial eigenstates, i.e.,
(
H�sP

1 � �
P

j Ejjcj� �cjj ,

H�sP
2 � �

P
j E0

jjcPj � �cPj j ,
(12)

where Ej and E0
j are in increasing order as usual. The

only well-defined sG’s are the n phase factors s
G
jPj

.
When the permutation is nontrivial (Pj fi j), the familiar
Berry-Pancharatnam phase factor associated with state j
is undefined. For this special case the only well-defined
geometric phases are the off-diagonal ones. One can
classify them according to standard group theory. Any
permutation P can be decomposed univocally into c
cycles of lengths l1, l2, . . . , lc [21]. To each cycle i, it
is possible to associate one g

�li �G
	 j
 , the li indexes 	 j


following the corresponding cycle. These phase factors
involve only nonzero UG

jk and are thus well defined.
In contrast, all other g�l�G’s are undefined. In Table I,
for each permutation P of the eigenstates we report the
corresponding well-defined g�l� for n # 4.

For these paths permuting the eigenvectors, the determi-
nant jUG j of the overlap matrix is related to the product of
the s’s. The equality jUG j � 1 becomes therefore

nY
j�1

sG
jPj

� �21�P . (13)

The third column of Table I summarizes this condition in
terms of the g�l�’s. In the special case of a real symmetric

TABLE I. All possible geometric phase factors g�l� defined in
Eq. (8), for an arbitrary path joining a point s1 to s2, such that
the eigenvectors of H�s2� are permuted according to P with
respect to those of H�s1�. The last column lists the number of
the possible combinations of values �61� that the g�l� factors
can take in the special case of a real H�s�. The stars mark the
permutations induced by relation (14), observed at the half-loop
of Ref. [17] for n � 2 and 3.

Geometric Condition No. of
n P phase factors jUG j � 1 cases

1 1 g1 g1 � 1 1

2 1 2 g1g2 g1g2 � 1 2
2 1 * g12 g12 � 21 1

3 1 2 3 g1g2g3 g1g2g3 � 1 4
2 1 3 g12g3 g12g3 � 21 2
3 2 1 * g13g2 g13g2 � 21 2
1 3 2 g23g1 g23g1 � 21 2
2 3 1 g123 g123 � 1 1
3 1 2 g132 g132 � 1 1

4 1 2 3 4 g1g2g3g4 g1g2g3g4 � 1 8
2 1 3 4 g12g3g4 g12g3g4 � 21 4
[5 similar] · · · 4
4 3 2 1 * g12g34 g12g34 � 1 2
[2 similar] · · · 2
2 3 1 4 g123g4 g123g4 � 21 2
[7 similar] · · · 2
2 3 4 1 g1234 g1234 � 1 1
[5 similar] · · · 1
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Hamiltonian H�s�, all s’s, and thus all g�l�’s, equal ei-
ther 11 or 21. For this simple but relevant situation,
the last column of Table I reports the number of combina-
tions of values that the g�l�’s may take, as allowed by the
condition (13).

The above arguments on the permutational symmetry re-
main valid even if Eq. (12) is only approximate, provided
that jUG

j,Pj
j ¿ n max�kfiPj� jU

G
jkj for all j. This extends

the interest of the permutational case to a finite domain
of the parameters’ space around the point where Eq. (12)
holds exactly or, more in general, to any region where the
inequality on UG

jk holds. For example, an approximate per-
mutation occurs when the energy levels of a Hamiltonian
H�s� undergo a sequence of sharp avoided crossings along
the path. At each avoided crossing, the two involved eigen-
states, to a good approximation, exchange. As a result,
there exist sizable regions between two avoided crossings
where the eigenvectors are an approximate permutation of
the starting ones.

Probably the simplest example of a nontrivial per-
mutation of the Hamiltonian eigenstates occurs when
the relation

H�s1� � 2H�s2� (14)

holds at the ends of the path. This symmetry is veri-
fied exactly by the spin- 1

2 system, where it determines
the swap of the eigenstates between u � 0 and u � p.
Relation (14) holds also, approximately, in very common
situations. Suppose, for example, that a point, say, s � 0,
locates an n-fold degeneracy, and consider the perturbative
expansion around there:

H�s� � s ? H�1� 1 . . . . (15)

[H�1� is a vector of Hermitian numerical matrices.] In the
sufficiently small neighborhood of the degeneracy, where
the linear term accounts for the main contribution to
the energy shifts, pairs of opposite points �s1, s2 � 2s1�
satisfy the relation (14). The permutation of the eigenstates
associated with (14) is composed by n�2 2-cycles for
even n, or by �n 2 1��2 2-cycles plus one 1-cycle for odd
n: the corresponding g’s are marked by stars in Table I.

In the final part of this Letter, we examine the deformed
microwave resonators experiment of Ref. [17]. In a re-
cent work [7] the diagonal, closed-path Berry phases were
calculated for that system. Here we analyze the experi-
ment of Ref. [17] as a transparent example of how off-
diagonal g

�2�
jk ’s can be measured for open paths. For these

systems, s � �s cosu, s sinu� parametrizes the displace-
ment of one corner of the resonator away from the posi-
tion of a conical intersection of the energy levels. Lauber
et al. [17] investigate the Berry phase of these nearly de-
generate states, when the distortion is driven through a
loop u � 0 to 2p around the degenerate point. The dis-
tortion path is traced in small steps in u, following adi-
abatically the real eigenfunctions. In Fig. 2 we report
3070
FIG. 2. The observed initial (u � 0), intermediate (u � p),
and final (u � 2p) eigenstates of the microwave cavities de-
formed following adiabatically the path of Ref. [17]. Left: the
two eigenstates of the triangular resonator. Right: the three
eigenstates of the rectangular resonator.

the initial (u � 0), halfway (u � p), and final (u � 2p)
parallel-transported eigenfunctions from the original pic-
tures of Ref. [17].

The first case considered is that of a triangular cavity
deformed around a twofold degeneracy: for small distor-
tions, the system behaves similarly to a spin 1

2 . In par-

ticular, the Berry phases g
�1�
j at the end of the loop both

equal 21 as expected for such a situation (cf. in Fig. 2
the recurrence of the pattern with changed sign at u � 0
and 2p). Because of the well approximate symmetry (14)
at half path (u � p), the diagonal Berry phases are un-
defined there, but it is instead possible to determine the
experimental value of g

�2�
12 for this path. From inspection

of Fig. 2 we determine s12 � 1, s21 � 21. This is con-
sistent with the only possible value g

�2�
12 � 21 allowed in

this spin- 1
2 -like case (see Table I). The same holds for the

path going from u � p to 2p .
The case of the rectangular resonator is more inter-

esting. Here, three states intersect conically at s � 0.
The three Berry phases g

�1�
j at the end of the loop (21,

11, and 21) are compatible with the determinant require-
ment of Table I. Figure 2 shows that empirically also this
system satisfies the symmetry relation H�p� � 2H�0�
at midloop. Thus, for the path u � 0 to p the only
well-defined Pancharatnam-Berry phase is that of the cen-
tral state g

�1�
2 � 21. The upper and lower states exchange,

giving s13 � 1, s31 � 1, and thus g
�2�
13 � 1. This is one

of the two combinations of values allowed by the determi-
nant rule g13g2 � 21 of Table I.

In conclusion, we have identified novel off-diagonal
geometric phase factors, generalizing the (diagonal) Berry
phase. The two sets of diagonal and off-diagonal geomet-
ric phases together exhaust the number of independent ob-
servable phase relations among n orthogonal states evolved
along a path. We show that, in many common situations,
the off-diagonal factors carry the relevant geometric phase
information on the basis of eigenstates.
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