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Onset of Sliding Friction in Incommensurate Systems
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We study the dynamics of an incommensurate chain sliding on a periodic lattice, modeled by the
Frenkel-Kontorova Hamiltonian with initial kinetic energy, without damping and driving terms. We show
that the onset of friction is due to a novel type of dissipative parametric resonances, involving several
resonant phonons which are driven by the (dissipationless) coupling of the center of mass motion to the
phonons with the wave vector related to the modulating potential. We establish quantitative estimates
for their existence in finite systems and point out the analogy with the induction phenomenon in Fermi-
Ulam-Pasta lattices.

PACS numbers: 46.55.+d, 05.45.–a, 45.05.+x, 46.40.Ff
The possibility of measuring friction at the atomic level
provided by the lateral force microscopes [1] and quartz
crystal microbalance [2] has stimulated intense research on
this topic [3]. Phonon excitations are the dominant cause
of friction in many cases [4]. Most studies are carried out
for one-dimensional nonlinear lattices [5–12] and in par-
ticular for the Frenkel-Kontorova (FK) model [13], where
the surface layer is modeled by a harmonic chain and the
substrate is replaced by a rigid periodic modulation poten-
tial. The majority [6–12] examines the steady state of the
dynamical FK model in the presence of dissipation, rep-
resenting the coupling of phonons to other, undescribed
degrees of freedom.

We study the dynamics of an undriven incommensurate
FK chain. Our aim is to ascertain if the experimentally
observed superlubricity [14] can be due to the blocking of
the phonon channels caused by an incommensurate con-
tact of the sliding surface. Therefore we do not include
any explicit damping of the phonon modes, since we wish
to find out if they can be excited at all by the motion of the
center of mass (c.m.). In an earlier study, Shinjo et al. [5]
found a superlubric regime for this model. We will show
that their finding is oversimplified by either too short
simulation times or too small system sizes. The inher-
ent nonlinear coupling of the c.m. to the phonons leads to
an irreversible decay of the c.m. velocity, albeit with very
long time scales in some windows. The dissipative mecha-
nism is driven by the coupling of the c.m. to the modes
with modulation wave vector, q, or its harmonics, vnq, and
consists of novel types of parametric resonances with much
wider windows of instabilities than those derived from the
standard Mathieu equation. The importance of resonances
at vnq has already been pointed out [6,8,10], with the sug-
gestion [10] that they could be absent in finite systems due
to the discrete phonon spectrum. However, it has not been
realized that they act as a driving term for the onset of
dissipation via subsequent complex parametric excitations
which we will describe, establishing quantitative estimates
for their existence in finite systems. A related mechanism
has recently been identified in the resonant energy transfer
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in the induction phenomenon in Fermi-Ulam-Pasta (FPU)
lattices [15].

We start with the FK Hamiltonian
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where un are the lattice positions and l is the equilib-
rium spacing for l � 0, l being the coupling strength
scaled to the elastic spring constant. The stiffness of the
system is inversely proportional to l [8]. We take an
incommensurable ratio of l to the period m of the peri-
odic potential, namely, m � 1, l � �1 1

p
5��2. We con-

sider chains of N atoms with periodic boundary conditions
uN11 � Nl 1 u1. Hence, in the numerical implementa-
tion, we have to choose commensurate approximations for
l so that l 3 N � M 3 1 with N and M integer; i.e., we
express l as the ratio of consecutive Fibonacci numbers.
The ground state of this model displays the so-called Aubry
transition [16] from a modulated to a pinned configuration
above a critical value lc � 0.14. Here we just note that
in the limit of weak coupling �l ø lc�, deviations from
equidistant spacing l in the ground state are modulated
with the substrate modulation wave vector q � 2pl�m
[17] as being due to the frozen-in phonon vq. Higher
harmonics nq have amplitudes which scale with ln.

We define the c.m. position and velocity as
Q �

1
N

P
n un, P �

1
N

P
n pn. By writing un � nl 1

xn 1 Q, the equations of motion for the deviations from
a rigid displacement xn read

ẍn � xn11 1 xn21 2 2xn 1 l cos�qn 1 2pxn 1 2pQ� .

(2)

We integrate by a Runge-Kutta algorithm the N equa-
tion (2) with initial momenta pn � P0 and xn�t � 0�
corresponding to the ground state. For a given velocity P,
particles pass over the maxima of the potential with
frequency V � 2pP, the so-called washboard frequency
© 2000 The American Physical Society
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[8,10]. In Fig. 1 we show the time evolution of the
c.m. momentum for l � lc�3 and several values of P0.
According to the phase diagram of Ref. [5], a superlubric
behavior should be observed for this value of l and
P0 $ 0.1. We find instead a nontrivial time evolution
with oscillations of varying period and amplitude and,
remarkably, a very fast decay of the c.m. velocity for
P0 � vq��2p� despite the absence of a damping term
in Eq. (2). A similar, but much slower, decay is found
for nP0 � vnq��2p�. In the study of the driven under-
damped FK [8] it is shown that, at these superharmonic
resonances, the differential mobility is extremely low.
Here, we work out an analytical description in terms of
the phonon spectrum which explains this complex time
evolution and identifies the dissipative mechanism which
is triggered by these resonances. In the limit of weak
coupling l, it is convenient to define Fourier transformed
coordinates xk �

1
N

P
n e2iknxn, with k � 2pn�N . The

equations of motion become:
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with vk � 2j sin�k�2�j. We expand Eq. (3a) in xn as:
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FIG. 1. Time dependence of the c.m. velocity for several val-
ues of P0 for N � 144, l � 0.05 � lc

3 . The dashed line corre-
sponds to P0 �

vq

2p � 0.2966. Close to higher resonances (solid
dots) a similar oscillatory behavior is observed, accompanied by
a slower decay which is not apparent on the time scale of the
figure.
Since in the ground state the only modes present in
order l are xq � x2q � l�2v2

q, the c.m. is coupled only
to these modes up to second order in l:

Q̈ � ilp�ei2pQx2q 2 e2i2pQxq� , (5a)

ẍ6q � 2v2
qx6q 1

l

2
e6i2pQ . (5b)

In Fig. 2 we compare the behavior of P�t� � �Q�t�, ob-
tained by solving the minimal set of Eqs. (5a) and (5b) with
the appropriate initial conditions Q�t � 0� � 0, P�t �
0� � P0, xq�t � 0� � l��2v2

q�, and �xq�t � 0� � 0 with
the one obtained from the full system of Eq. (2). Equations
(5a) and (5b) reproduce very well the initial behavior of the
c.m. velocity which displays oscillations of frequency D

around the value V�2p but do not predict the decay oc-
curring at later times because, as we show next, this is due
to coupling to other modes. To this aim, we analyze the
relation between the initial c.m. velocity P0 and V�2p ,
respectively, D6.

Take, as an ansatz for the c.m. motion,

Q�t� �
V

2p
t 1 a1 sin�D1t� 1 a2 sin�D2t� . (6)

By inserting the ansatz (6) into the coupled set of Eqs. (5a)
and (5b) keeping only terms linear in a6, we find that both
D6’s are roots of

D2 � l2p2�2Z�0� 2 Z�D� 2 Z�2D�� , (7)

with Z�D� being the impedance

Z�D� �
1

v2
q 2 �V 1 D�2 . (8)

In general, Eq. (7) has (besides the trivial solution D � 0)
indeed two solutions, related to the sum and difference of
the two basic frequencies in the system, vq and V:
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FIG. 2. Simulation of the full FK system according to Eq. (2)
(solid lines) and numerical solution of Eqs. (5a) and (5b) (dashed
lines) for N � 144, l � 0.015, and several values of P0 at
about P0 � 0.29. The differences between the two approaches
are negligible. The average value of the c.m. velocity V�2p
(horizontal dashed line) and the period of the oscillation for
P0 � 0.29 are also shown.
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Close to resonance, V � vq, the amplitude a2 dominates
(see below) and the c.m. oscillates with a single frequency
D � D2 (see Fig. 2). Very close to resonance (more
precisely vq , V , vq 1 �2l2p2�vq�1�3), the root D2

becomes imaginary, signaling an instability. In fact, the
system turns out to be bistable, as can be seen in Fig. 3 by
the jump in V�P0� as P0 passes through vq��2p�.

Analytically, the relation between V and P0, and the
amplitudes a6, is determined by matching the ansatz (6)
with the initial condition:
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The fact that Eq. (11) has multiple solutions for V

when P0 � vq�2p is in accordance with the
jump seen in Fig. 3. However, Eq. (11), is de-
rived by keeping only linear terms in a2 and
cannot describe in detail the instability around vq

where a2 diverges.
An initial behavior similar to that for P0 � vq�2p is

observed in Fig. 1 for nP0 � vnq�2p . We examine the
case n � 2. Equation (4) shows that x2q is driven in next
order in l by xq:

ẍ2q � 2v2
2qx2q 1 i2lpei2pQxq . (12)

At 2pQ � Vt, xq is �leiVt , so that x2q is forced
with amplitude l2 and frequency 2V, yielding reso-
nance for 2V � v2q. Since x2q couples back to xq, we
have a set of equations similar to Eqs. (5a) and (5b), but
at order l2.
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FIG. 3. Closed and open dots, frequencies D (left axis) and
V (right axis) versus P0 for simulations for N � 144, l �
0.015. Dashed and solid lines: solutions of Eqs. (9) and (11),
respectively.
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We now come to the key issue, namely, the onset of fric-
tion causing the decay of the c.m. velocity seen in Fig. 1 at
later times, which cannot be explained by the coupling of
the c.m. to the main harmonics nq. Since xq is by far the
largest mode in the early stage, we consider second order
terms involving xq in Eq. (4):

ẍk � 2�v2
k 1 2lp2�ei2pQx2q 1 e2i2pQxq��xk .

(13)

Insertion of the solution obtained above for xq [Eq. (5b)]
and Q [Eq. (6)] yields

ẍk � 2�v2
k 1 A 1 B cos�Dt��xk (14)

with A � 2�lp�2�Z�0� and B � a2. The friction caused
by these terms decreases with l2, i.e., with increasing
stiffness. Equation (14) is a Mathieu parametric reso-
nance for mode xk . The relevance of parametric reso-
nances has been recently stressed [12]. However, here,
due to the coupling of the c.m. to the modulation mode
q, resonances are not at the washboard frequency V but at
D � V 2 vq. Hence, we find instability windows around
v

2
k 1 A � �nD�2�2. Since D is small close to resonance,

instabilities are expected for acoustic modes with k small.
Indeed, as shown in Fig. 4a, we find by solving Eq. (2)
that the decay of the c.m. is accompanied by the exponen-
tial increase of the modes k � 2, 3, 4 and, with a longer
rise time, k � 1. However, the instability windows re-
sulting from Eq. (14), shown in Fig. 4b, cannot explain
the numerical results of Fig. 4a, i.e., the Mathieu formal-
ism cannot explain the observed instability. In Eq. (4), the
only linear terms omitted in Eq. (13) are couplings with
xk6q, which are much higher order in l. Nevertheless,
these terms are crucial since they may cause new instabili-
ties due to the fact that, for small k, they are also close to
resonance. We have solved the coupled set of equations
for mode x6k and xk6q:

ẍk � 2 �v2
k 1 2lp2�ei2pQx2q 1 e2i2pQxq��xk

1 ilp�ei2pQxk2q 2 e2i2pQxk1q� , (15a)

ẍk6q � 2 �v2
k6q 1 2lp2�ei2pQx2q 1 e2i2pQxq��xk6q

6 ilpe6i2pQxk , (15b)

together with Eqs. (5a) and (5b) for continuous k. Indeed,
we find a wider range of instabilities, giving a detailed ac-
count of the numerical result as shown in Fig. 4b. This
mechanism where a parametric resonance is enhanced by
coupling to near-resonant modes is quite general in sys-
tems with a quasicontinuous spectrum of excitations and
is related to the one proposed [15] in explaining instabili-
ties in the FPU chain in a different physical context.
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FIG. 4. (a) jxk�t�j2 of the first four modes from Eq. (2) with
N � 144, l � 0.015, and P0 � 0.29. Note that the first mode
has a longer rise time and that the third mode is the most un-
stable. (b) Dispersion relation for a chain of 144 atoms [k
values in units of � 2p

144 )]. Unstable modes resulting from the full
simulation are represented by solid dots. The shaded k ranges
give the instability windows resulting from the Mathieu-type
Eq. (13) and cannot explain the simulation. Conversely the wig-
gled ranges of the phonon dispersion (WU � weakly unstable,
SU � strongly unstable) are the instability windows predicted
by Eqs. (5a), (5b), (15a), and (15b). They explain all instabili-
ties as well as the long rise time of the first mode (WU) and the
shortest one of the third mode which falls in the middle of the
SU range.

The number of particles N is an important parameter.
When this number is very small, the chain is in fact com-
mensurate and the phase of the c.m. is locked (the gap
scales as lN due to umklapp terms). Next, one enters a
stage of apparent superlubric behavior due to the fact that
the spectrum is still discrete on the scale of the size of
the instability windows discussed above. For N � 144
and l �

1
3 lc (Fig. 1) we only begin to see the decay for

values of P0 close to resonances. The experimentally ob-
served superlubricity in [14] could then be due either to
the finiteness of the system or to the low sliding velocities.

The above described multiple parametric excitation
gives rise to an effective damping for the system via a
cascade of couplings to more and more modes via the
nonlinear terms in Eq. (4). It remains an open question
if this mechanism will eventually lead to a full or partial
equilibrium distribution of energy over the normal modes
[18], although our preliminary results support the former
hypothesis even at weak couplings.

In summary, we have described in detail the mechanism
which gives rise to friction during the sliding of a harmonic
system onto an incommensurate substrate. The onset of
friction occurs in two steps: the resonant coupling of the
c.m. to modes with the wave vector q leads to long wave-
length oscillations which in turn drive a complex para-
metric resonance involving several resonant modes. This
mechanism is robust in that it leads to wide instability win-
dows and represents a quite general mechanism for the
onset of energy transfer in systems with a quasicontinuous
spectrum of excitations.
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