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Nature of the Spin Glass State

Matteo Palassini and A. P. Young
Department of Physics, University of California, Santa Cruz, California 95064

(Received 9 February 2000)

The nature of the spin glass state is investigated by studying changes to the ground state when a weak
perturbation is applied to the bulk of the system. We consider short range models in three and four
dimensions and the infinite range Sherrington-Kirkpatrick (SK) and Viana-Bray models. Our results for
the SK and Viana-Bray models agree with the replica symmetry breaking picture. The data for the short
range models fit naturally a picture in which there are large scale excitations which cost a finite energy
but whose surface has a fractal dimension, ds, less than the space dimension d. We also discuss the
possible crossover to other behavior at larger length scales than the sizes studied.

PACS numbers: 75.50.Lk, 05.70.Jk, 75.40.Mg, 77.80.Bh
The nature of ordering in spin glasses below the transi-
tion temperature, Tc, remains a controversial issue. Two
theories have been extensively discussed: the “droplet
theory” proposed by Fisher and Huse [1] (see also
Refs. [2–4]), and the replica symmetry breaking (RSB)
theory of Parisi [5–7]. An important difference between
these theories concerns the number of large scale, low
energy excitations. In the RSB theory, which follows the
exact solution of the infinite range SK model, there are
excitations which involve turning over a finite fraction
of the spins and which cost only a finite energy even in
the thermodynamic limit. Furthermore, the surface of
these excitations is argued [8] to be space filling; i.e.,
the fractal dimension of their surface, ds, is equal to the
space dimension, d. By contrast, in the droplet theory,
the lowest energy excitation which involves a given spin
and which has linear spatial extent L typically costs an
energy of order Lu , where u is a (positive) exponent.
Hence, in the thermodynamic limit, excitations which flip
a finite fraction of the spins cost an infinite energy. Also,
the surface of these excitations is not space filling, i.e.,
ds , d.

Recently we [9–11] investigated this issue by look-
ing at how spin glass ground states in two and three di-
mensions change upon changing the boundary conditions.
Extrapolating from the range of sizes studied to the ther-
modynamic limit, our results suggest that the low energy
excitations have ds , d. Similar results were found in two
dimensions by Middleton [12]. In this paper, following a
suggestion by Fisher [13], we apply a perturbation to the
ground states in the bulk rather than at the surface. The
motivation for this is twofold: (i) We can apply the same
method both to models with short range interactions and
to infinite range models, like the SK model, and so can
verify that the method is able to distinguish between the
RSB picture, which is believed to apply to infinite range
models, and some other picture which may apply to short
range models. (ii) It is possible that there are other low
energy excitations which are not excited by changing the
boundary conditions [14,15].
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We consider the short range Ising spin glass in three and
four dimensions, and, in addition, the SK and Viana-Bray
[16] models. The latter is infinite range but with a finite
average coordination number z, and is expected to show
RSB behavior. All these models have a finite transition
temperature.

Our results for the SK and Viana-Bray models show
clearly the validity of the RSB picture. However, for the
short range models, our data are consistent with a pic-
ture suggested by Krzakala and Martin [17] where there
are extensive excitations with finite energy, i.e., their en-
ergy varies as Lu0

with u0 � 0, but ds , d. In three di-
mensions, this picture is difficult to differentiate from the
droplet picture where the energy varies as Lu , because of
the small value of u (� 0.2, obtained from the magnitude
of the change of the ground state energy when the bound-
ary conditions are changed from periodic to antiperiodic
[18]). It is easier to distinguish the two pictures in 4D,
even though the range of L is less, because u is much
larger [19] (� 0.7).

The Hamiltonian is given by

H � 2
X

�i,j�
JijSiSj , (1)

where, for the short range case, the sites i lie on a simple
cubic lattice in dimension d � 3 or 4 with N � Ld sites
(L # 8 in 3D, L # 5 in 4D), Si � 61, and the Jij are
nearest-neighbor interactions chosen from a Gaussian dis-
tribution with zero mean and standard deviation unity. Pe-
riodic boundary conditions are applied. For the SK model
there are interactions between all pairs chosen from a
Gaussian distribution of width 1�

p
N 2 1, where N #

199. For the Viana-Bray model each spin is connected
with z � 6 spins on average, chosen randomly, the width
of the Gaussian distribution is unity, and the range of sizes
is N # 399. To determine the ground state we use a hy-
brid genetic algorithm introduced by Pal [20], as discussed
elsewhere [10].

Let S
�0�
i be the spin configuration in the ground state for

a given set of bonds. Having found S
�0�
i , we then add a
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perturbation to the Hamiltonian designed to increase the
energy of the ground state relative to the other states, and
so possibly induce a change in the ground state. This
perturbation, which depends upon a positive parameter e,
changes the interactions Jij by an amount proportional to

S
�0�
i S

�0�
j , i.e.,

DH �e� � e
1

Nb

X

�i,j�
S

�0�
i S

�0�
j SiSj , (2)

where Nb is the number of bonds in the Hamiltonian. The
energy of the ground state will thus increase exactly by an
amount DE�0� � e. The energy of any other state, a say,
will increase by the lesser amount DE�a� � eq

�0,a�
l , where

q
�0,a�
l is the “link overlap” between the states “0” and a,

defined by

q
�0,a�
l �

1
Nb

X

�i,j�
S

�0�
i S

�0�
j S

�a�
i S

�a�
j , (3)

in which the sum is over all the Nb pairs where there are
interactions. Note that the total energy of the states is
changed by an amount of order unity.

The decrease in the energy difference between a low
energy excited state and the ground state is given by

dE�a� � DE�0� 2 DE�a� � e�1 2 q
�0,a�
l � . (4)

If this exceeds the original difference in energy, E�a� 2

E�0�, for at least one of the excited states, then the ground
state will change due to the perturbation. We denote the
new ground state spin configuration by S̃

�0�
i , and indicate

by ql and q, with no indices, the link and spin overlap
between the new and old ground states.

Next we discuss the expected behavior of q and ql for
the various models. For the SK model, it is easy to derive
the trivial relation, ql � q2 (for large N). Since RSB the-
ory is expected to be correct, there are some excited states
which cost a finite energy and which have an overlap q
less than unity. According to Eq. (4), these have a finite
probability of becoming the new ground state. Hence the
average value of q and ql over many samples, denoted by
�· · ·�av , should tend to a constant less than unity in the ther-
modynamic limit. This behavior is shown in the inset of
Fig. 1. For the Viana-Bray model, where there is no triv-
ial connection between q and ql , we show in Fig. 1 data
for R � �1 2 �ql�av���1 2 �q�av � for several values of e.
This also appears to saturate. We plot this ratio rather
than �q�av or �ql�av for better comparison with the short
range case below. For both models we took e to be a mul-
tiple of the transition temperature (the mean-field approxi-
mation to it, TMF

c �
p

z, for the Viana-Bray model), so
that a perturbation of comparable magnitude was applied in
both cases.

What do we expect for the short range models? In the
RSB theory, 1 2 �q�av and 1 2 �ql�av (and hence the ratio
R) should saturate to a finite value for large L. To derive
3018
FIG. 1. Data for R � �1 2 �ql�av ���1 2 �q�av � for the
Viana-Bray model with coordination number z � 6 for several
values of e. The curvature is a strong indication that the
data tend to a nonzero value for N ! `, as for the SK
model. The best fits to a 1 b�Nc, shown by the lines,
give a � 0.872 6 0.005, 0.883 6 0.01, and 0.84 6 0.03
for e �

p
6, e �

p
6�2, and e �

p
6�4, respectively. Inset:

1 2 �q�av for the SK model with the strength of the perturbation
given by e � 1. Because ql � q2, the behavior of �ql�av is
very similar. The data are clearly tending to a constant at large
N . The solid line is the best fit and has a � 0.377 6 0.004.

the prediction of the droplet theory, suppose that the en-
ergy to create an excitation of linear dimension, l, has a
characteristic scale of lu0

(we use u0 rather than u to allow
for the possibility that this exponent is different from the
one found by changing the boundary conditions). Let us
assume that large clusters (l 	 L) dominate and ask for
the probability that a large cluster is excited. The energy
gained from the perturbation is e�1 2 ql� 
 e�L�d2ds�

since 1�L�d2ds� is the fraction of the system containing
the surface (i.e., the broken bonds) of the cluster. Gener-
ally, this will not be able to overcome the Lu0

energy cost
to create the cluster. However, there is a distribution of
cluster energies, and if we make the plausible hypothesis
that this distribution has a finite weight at the origin, then
the probability that the cluster is excited is proportional to
1�Ld2ds1u0

. In other words

1 2 �q�av 
 e�Lm where m � u0 1 d 2 ds . (5)

As discussed above, 1 2 ql is of order 1�L�d2ds� and so

1 2 �ql�av 
 e�Lml where ml � u0 1 2�d 2 ds� .
(6)

Similar expressions have been derived by Drossel
et al. [21] in another context. Equations (5) and (6) are
expected to be valid only asymptotically in the limit
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e ! 0. In order to include data for a range of values of e

we note that the data are expected to scale as

1 2 �q�av � Fq�e�Lm� ,

1 2 �ql�av � L2�d2ds�Fql �e�Lm� ,
(7)

where the scaling functions Fq�x� and Fql �x� both vary
linearly for small x. Note that the above discussion applies
also to a picture in which u0 � 0 and ds , d.

A scaling plot of our results for 1 2 �q�av in 3D is
shown in Fig. 2. We consider a range of e from

p
6�4

to 4
p

6 (note that TMF
c �

p
6) and find that the data

collapse well onto the form expected in Eq. (7) with
m � 0.44 6 0.02.

It is also convenient to plot the ratio R, which represents
the surface to volume ratio of the excited clusters. This has
a rather weak dependence on e and, as shown in Fig. 3,
the data for each of the values of e fit well the power
law behavior L2�d2ds�, expected from Eqs. (5) and (6),
with d 2 ds between 0.40 and 0.41 (the goodness of fit
parameter, Q, is 0.07, 0.03, 0.85, 0.23, 0.10, in order of
increasing e). The inset of Fig. 3 shows that there are
small deviations from the asymptotic behavior, which can
be accounted for by a scaling function with the same value
of m as in Fig. 2 and with

d 2 ds � 0.42 6 0.02 �3D� . (8)

From this value of m and Eqs. (5) and (8) we find

u0 � 0.02 6 0.03 �3D� . (9)

FIG. 2. A scaling plot of the data for �q�av in 3D according
to Eq. (7). The data collapse is very good with m � 0.44.
The solid curve is a polynomial fit (x2 � 14.9, d.o.f. � 13),
constrained to go through the origin, omitting the L � 3 data.
The dashed line is the linear term in the fit.
In order to test the RSB prediction, we tried fits of the
form R � a 1 b�Lc, which give a � 0.28 6 0.18,
0.01 6 0.14, 0.04 6 0.11, and 20.28 6 0.18 (Q � 0.08,
0.01, 0.72, and 0.52) for e�t � 0.25, 0.5, 1, and 2.
These are consistent with a � 0, though a fairly small
positive value, which would imply ds � d, cannot be
ruled out. For e�t � 4 the fit gives a small positive value,
0.18 6 0.07 (Q � 0.79), but this is likely too large a value
of e to be in the asymptotic regime for these sizes (see the
inset of Fig. 3). The form R � a 1 b�L 1 c�L2 also
fits reasonably well the data and gives a between 0.41
and 0.48 (Q � 0.16, 0.03, 0.82, 0.80, 0.16). However,
for both forms, the data are very far from the asymptotic
limit R 
 a for the sizes considered, unlike for the Viana-
Bray model (compare the main parts of Figs. 1 and 3).
By contrast, the deviation from the asymptotic behavior
R 
 L2�d2ds� is quite small (see the inset of Fig. 3).

In Fig. 4 we show analogous results in 4D. The calcu-
lations were performed for two different values e �

p
8�4

and
p

8 (� TMF
c ). The exponents are essentially the same

for these two values of the perturbation and the fits give
m � 0.26 6 0.04, d 2 ds � 0.23 6 0.02, and so from
Eq. (5) we get our main results for 4D:

u0 � 0.03 6 0.05, d 2 ds � 0.23 6 0.02 �4D� .
(10)

FIG. 3. A plot of R � �1 2 �ql�av ���1 2 �q�av �, the surface
to volume ratio of the clusters, in 3D as a function of system
size for different values of e. For clarity the e � t�2 data are
omitted. The dependence on e is quite weak, and for each value
of e the data give a good fit to a straight line with slope [equal to
2�d 2 ds�] consistent with Eq. (8). The inset shows a scaling
plot of the data according to Eq. (7) with the same value of m
as in Fig. 2. The solid curve is a polynomial fit (x2 � 26.0,
d.o.f. � 18).
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FIG. 4. The main figure shows the ratio R � �1 2
�ql�av ���1 2 �q�av � for different values of e in 4D. The
inset shows corresponding data for �q�av .

The data in Fig. 4 are consistent with the scaling form in
Eq. (7), but the data for the two values of e are too widely
separated to demonstrate scaling.

Interestingly, our results in both 3D and 4D are con-
sistent with u0 � 0, and, within the error bars (which are
purely statistical), incompatible with the relation u0 � u,
since u � 0.20 in 3D [10,18] and u � 0.7 in 4D [19]. In
3D, u 2 u0 is small, but in 4D this difference is larger and
hence the conclusion that u0 fi u is stronger. However, the
conclusion that d 2 ds . 0 is less strong in 4D because
our value for d 2 ds is quite small and the range of sizes
is smaller than in 3D.

It would be interesting, in future work, to study the na-
ture of these excitations to see how they differ from the
excitation of energy Lu (with u . 0) induced by bound-
ary condition changes [10,18,19]. In particular, if their
volume is space filling, one would expect a nontrivial or-
der parameter distribution, P�q�, at finite temperatures.

To conclude, an interpretation of our results for short
range models which is natural, in that it fits the data with
a minimum number of parameters and with small correc-
tions to scaling, is that there are large-scale low energy
excitations which cost a finite energy, and whose surface
has fractal dimension less than d. This picture differs from
the one suggested by Houdayer and Martin [15], in which
ds � d. Furthermore, the results for short range models
appear quite different from those of the mean-field–like
Viana-Bray model for samples with a similar coordination
number and a similar number of spins. Other scenarios,
such as the droplet theory [with u0 � u�.0�] or an RSB
picture (where u0 � 0, d 2 ds � 0), require larger cor-
3020
rections to scaling, but we cannot rule out the possibility
of crossover to one of these behaviors at larger sizes.
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