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Excitations of three-dimensional spin glasses are computed numerically. We find that one can flip
a finite fraction of an L X L X L lattice with an O(1) energy cost, confirming the mean-field picture
of a nontrivial spin overlap distribution P(g). These low energy excitations are not domain-wall-like,
rather they are topologically nontrivial and they reach out to the boundaries of the lattice. Their surface
to volume ratios decrease as L increases and may asymptotically go to zero. If so, link and window
overlaps between the ground state and these excited states become “trivial.”
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Spin glasses [1] are currently at the center of a hot de-
bate. One outstanding question is whether there exists
macroscopically different valleys whose contributions si-
multaneously dominate the partition function. At zero tem-
perature, given the ground state configuration, this leads
one to ask whether it is possible to flip a finite fraction of
the spins and reach a state with excess energy O(1). From
a mean-field perspective [2], one expects this to be true
since it happens in the Sherrington-Kirkpatrick (SK) model.
However, it is very unnatural in the context of the droplet
[3] or scaling [4] approaches where the characteristic en-
ergy of an excitation grows with its size. Recently, it has
been suggested that the energy of an excitation may grow
with its size € as in the droplet scaling law, E(€) =~ £%,
but only for € << L, and that for £ = O(L) the energies
cross over to a different law, E = L% where L is the size
of the system [5]. The first exponent, 6; (I for local), may
be given by domain wall estimates, #; = 0.2, while the
second exponent, 6, (g for global), could be given by the
mean-field prediction, 6, = 0. In this “mixed” scenario,
one has coexistence of the droplet model at finite length
scales and a mean-field behavior (if 6, = 0) for system-
size excitations (€ = L for which a finite fraction of all
the spins are flipped).

The purpose of this article is to provide numerical
evidence that such a mixed scenario is at work in the
three-dimensional Edwards-Anderson spin glass. We have
determined ground states and excited states for different
lattice sizes and have analyzed their geometrical prop-
erties. The qualitative picture we reach is that indeed
0, = 0. System-size constant energy excitations are not
artefacts of trapped domain walls caused by periodic
boundary conditions, they are intrinsic to this kind of
frustrated system. The energy landscape of the Edwards-
Anderson model then consists of many valleys, probably
separated by large energy barriers. Extrapolating to finite
temperature, this picture leads to a nontrivial equilibrium
spin overlap distribution function P(g).

Given the geometric properties of our excitations, we
suggest a new scenario for finite dimensional spin glasses:
if the surface to volume ratios of these large scale exci-
tations go to zero in the large L limit, then the replica
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symmetry breaking will be associated with a trivial link
overlap distribution function P(g;). We have coined this
scenario TNT for trivial link overlaps yet nontrivial spin
overlaps. Such a departure from the standard mean-field
picture might hold in any dimension d = 3.

The spin glass model.—We consider an Edwards-
Anderson Hamiltonian on a three-dimensional L X L X L
cubic lattice:

H;({Si}) = — Z-IijSiSj' (1
(ij)
The sum is over all nearest neighbor spins of the lattice.
The quenched couplings J;; are independent random vari-
ables, taken from a Gaussian distribution of zero mean and
unit variance. For the boundaries, we have imposed either
periodic or free boundary conditions. Although in simula-
tions of most systems it is best to use periodic boundary
conditions so as to minimize finite size corrections, the
interpretation of our data is simpler for free boundary con-
ditions. It may also be useful to note that if boundary con-
ditions matter in the infinite volume limit, free boundary
conditions are the experimentally appropriate ones to use.

Extracting excited states.—The problem of finding the
ground state of a spin glass is a difficult one. In this
study we use a previously tested [6] algorithmic procedure
which, given enough computational resources, gives the
ground state with a very high probability for lattice sizes
up to 12 X 12 X 12. (Since our J;;s are continuous, the
ground state is unique up to a global spin flip.) Our study
here is limited to sizes L = 11; then the rare errors in
obtaining the ground states are far less important than our
statistical errors or than the uncertainties in extrapolating
our results to the L — o limit.

Our purpose is to extract low-lying excited states to
see whether there are valleys as in the mean-field picture
or whether the characteristic energies of the lowest-lying
large scale excitations grow with L as expected in the
droplet/scaling picture. Ideally, one would like to have a
list of all the states whose excess energy is below a given
cutoff. However, because there is a nonzero density of
states associated with droplets (localized excitations), this
is an impossible task for the sizes of interest to us. Thus,
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instead we extract our excitations as follows. Given the
ground state (hereafter called Cy), we choose two spins
S; and S; at random and force their relative orientation
to be opposite from what it is in the ground state. This
constraint can be implemented by replacing the two spins
by one new spin giving the orientation of the first spin, the
other one being its “slave.” We then solve for the ground
state C of this modified spin glass. The new state C is
necessarily distinct from Cy as at least one spin (S; or S;)
is flipped. That flipped spin may drag along with it some
of its surrounding spins, forming a droplet of characteristic
energy O(1). In the droplet picture, this is all that happens
in the infinite volume limit. However, if there exist large
scale excitations with O(1) energies, then C may be such
an excitation if its energy is below that of all the droplets
containing either §; or S;.

Statistics of cluster sizes.—Let V be the number of sites
of the cluster defining the spins that are flipped when going
from Cp to C (by symmetry, V is taken in [1,L3/2]). If
P(V) is the probability to have an event of size V, the
droplet and mean-field pictures lead us to the following
parametrization:

P(V) = (1 — a)Pi(V) + aP,(V/L%). (2)

Here, P; and P, are normalized probability distributions
associated with the droplet events (V fixed, L — %) and
the global events [V = O(L?)]. If large scale excitations
have energies O(L?%), the ratio /(1 — a) of the two con-
tributions should go as L~%. In the droplet/scaling pic-
ture, the global part decreases as L~ that is, slow since
6; = 0.2. In contrast, in the mean-field scenario, both the
V finite and the V growing linearly with L3 contributions
converge with nonzero weights, 0 < a < 1, albeit with
O(L™%) finite size corrections.

Given that the usable range in L is no more than a fac-
tor of 2 so that L™% does not vary much, measurements
of P(V) on their own are unlikely to provide stringent
tests. Nevertheless, consider the probability Q (v, v’) that
V/L? is in the interval [v,v']. Up to finite size correc-
tions, Q(v,v’) = a [ P,(x)dx. In our computations,
we haveused 5 = L = 11, averaging for each L over 2000
to 10000 randomly generated samples of the J;;. For each
sample, we determined the ground state, and then obtained
three excitations by choosing successively at random three
pairs of spins (S;,S;). We find that Q(v,v’) decreases
slowly with L for both periodic and free boundary condi-
tions, as expected in the droplet and mean-field pictures.
Because 6; is small, when we perform fits of the form
O(v,v') = A + BL™*, we are not able to exclude A = 0
nor A # 0 with any significant confidence, so a more re-
fined method of analysis is necessary: we will thus con-
sider the geometrical properties of the events.

Before doing so, note that the statistical error on
Q(v,v') depends on the number of large scale events
found in the [v, v'] interval. If the spin S; or §; has a small
local field, there is a good chance that the corresponding
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event will have V = 1, thereby reducing the statistics of
the “interesting” events. To amplify our signal of large V
events, we did not consider such spins and focused our
attention on spins in the top 25 percentile when ranked
according to their local field. All of our data were ob-
tained with that way of selecting S; and S;. [Naturally,
P(V) and Q(v,v’) depend on this choice, but the general
behavior should be the same for any choice.]

Topological features of the clusters.—QOur claim that
0, < 6; can be credible only if our large scale excitations
are different from domain walls (whose energies are be-
lieved to grow as L%?). Tt is thus useful to consider geo-
metrical characterizations of the excitations generated by
our procedure. Figure 1 shows a typical cluster found for a
123 lattice. It contains 622 spins and its (excitation) energy
is 0.98 which is O(1). The example displayed is for free
boundary conditions which permits a better visualization
than periodic boundary conditions.

The cluster shown touches many of the six faces of the
cube, and the same is true for the complement of that
cluster.

Such a cluster has a very nontrivial topology and is thus
very far from being domain-wall-like. This motivates the
following threefold classification of the events we obtain
when considering free boundary conditions. In the first
class, a cluster and its complement touch all six faces of
the cube. In the second class, a cluster touches at most
three faces of the cube. The third class consists of all other
events. Finite size droplets should asymptotically always
fall into the second class, albeit with finite size corrections
of order L™,

Does the first class constitute a nonzero fraction of all
events? At finite L, we find the following fractions: 23.3%

FIG. 1. Example of excitation found for a 12° lattice with free
boundary conditions.
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(L =15),239% (L = 6),251% (L = 7),24.4% (L = 3),
25.0% (L =9), 25.7% (L = 10), and 26.0% (L = 11).
The trend of these numbers suggests that the first class
does indeed encompass a finite fraction of all the events
when L — . We also considered the scaling of cluster
sizes with L. Figure 2 shows Q(v,1/2) as a function
of v = V/L3, restricted to events belonging to the first
class. (The v = 0O values are the fractions we just gave
above.) The curves for different L show a small drift,
0O(v,1/2) growing with L. We consider this drift to be
a finite size effect and that the correct interpretation of our
data is 6, = 0, in agreement with the mean-field picture.
Our conclusion is then that, as L — oo, there is a finite
probability of having an O(1) energy excitation that is non-
domain-wall-like, the cluster and its complement touching
all faces of the cube.

Surface to volume ratios.—Obviously the mean-field
picture obtained by extrapolating results from the SK or
Viana-Bray spin glasses cannot teach us anything about the
topology of excitations for three-dimensional lattices. But
mean field may serve as a guide for other properties such
as the link overlap ¢; between ground states and excited
states. In the SK model, the spin overlap ¢ = > S;S//N
and the link overlap ¢; = >.(S;S;) (SiS})/[N(N — 1)/2]
satisfy ¢; = ¢, and both ¢ and ¢; have nontrivial distribu-
tions. Extrapolating this to our three-dimensional system,
the mean-field picture predicts that the clusters associated
with large scale excitations both span the whole system (as
we saw with free boundary conditions) and are space fill-
ing. Quantitatively, this implies that their surface grows as
the total volume of the system, i.e., as L3

To investigate this question, we have measured the sur-
face of our excitations, defined as the number S of links
connecting the corresponding cluster to its complement.
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FIG. 2. Integrated probability Q(v, 1/2) of events in the first

class. (From bottom to top, L = 5,7,9,11.)

(Then ¢; = 1 — 25/3L3.) In Fig. 3 we show the mean
value of §/L> as a function of L for v = V /L3 belong-
ing to the three intervals [0.20,0.25], [0.30,0.35], and
[0.40,0.45]. The data shown are for free boundary con-
ditions, but the results are very similar for periodic bound-
ary conditions. The most striking feature is that the curves
decrease very clearly with L. For each interval, we have
fitted the data to (S)/L*> = A + B/L* and to a polyno-
mial in 1/L. Of major interest is the value of the constant
because it gives the large L limit of the curves.

Table I summarizes the quality of the fits as given by
their y2 (chi squared per degree of freedom). In all cases
the fits are reasonably good; this is not so surprising be-
cause our range of L values is small. The most reliable
fits are obtained using a quadratic polynomial in 1/L, this
functional form leading to a smooth and monotone behav-
ior of the parameters and to small uncertainties in the pa-
rameters. For the large L limits, these fits give A = 0.22,
A = 0.27, and A = 0.30 for the three intervals. (We do
not give results for the linear fits which, on the contrary,
are very poor.) The constant plus power fits also have good
X2 but the As obtained were small and decreased with v;
also they had large uncertainties and seemed to be compat-
ible with A = 0. Because of this, we also performed fits of
the form (S)/L® = B/L*. These are displayed in Fig. 3
and lead to . = 0.30 (the exponent varies little from curve
to curve), again with reasonable x?2s. Because of this, we
feel we cannot conclude from the data that the surface to
volume ratios tend towards a nonzero asymptote. What
can be said is that this asymptote seems to be small, and
that it will be difficult to be sure that it is nonzero without
going to larger values of L.
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FIG. 3. Mean value of surface to L? ratios for v = V/L? in

intervals around 0.225, 0.325, 0.425 (bottom to top) using free
boundary conditions. Curves are pure power fits.
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TABLE I. Chi squared per degree of freedom for the fits to
the data of Fig. 3.

Interval A + B/L* A + B/L + C/L? B/L*
[0.20,0.25] 0.6 0.6 2.0
[0.30,0.35] 1.1 1.1 1.5
[0.40,0.45] 0.7 0.9 0.6

Discussion.—For the three-dimensional Edwards-

Anderson spin glass model, we have presented numerical
evidence that it is possible to flip a finite fraction of the
whole lattice at an energy cost of O(1), corresponding
to 6, = 0 as predicted by mean field. This property
transpired most clearly through the use of free boundary
conditions, allowing one to conclude that 8, = 0 is not
an artefact of trapped domain walls caused by periodic
boundary conditions. Extrapolating to finite temperature,
we expect the equilibrium P(q) to be nontrivial as in the
mean-field picture.

The other messages of our work concern the nature of
these large scale excitations whose energies are O(1). First,
using free boundary conditions, we found them to be topo-
logically highly nontrivial: with a finite probability they
reach the boundaries on all six faces of the cube. Thus,
they are not domain-wall-like; rather they are spongelike.
Second, our data (both for periodic and free boundary con-
ditions) indicate very clearly that their surface to volume
ratios decrease as L increases. The most important issue
here is whether or not these ratios decrease to zero in the
large L limit. Although our data are compatible with a
nonzero limiting value as predicted by mean field, the fits
were not conclusive so further work is necessary.

If the surface to volume ratios turned out to go to zero,
we would be led to a new scenario that we have coined
“TNT.” In the standard mean-field picture, the surface to
volume ratios cannot go to zero; indeed in the SK and
Viana-Bray spin glass models there are no spin clusters
with surface to volume ratios going to zero. However, in
finite dimensions, one can have surface to volume ratios
going to zero, in which case ¢; — 1. This property would
then lead to a nontrivial P(g) but to a trivial P(g;). This
trivial-nontrivial (TNT) scenario does not seem to have
been proposed previously.

Perhaps the most dramatic consequence of this new sce-
nario is for window overlaps in spin glasses: because in
TNT one is asymptotically always in the bulk of an excita-
tion, correlation functions at any finite distance will show
no effects of replica symmetry breaking. That this may
arise in fact is supported by work by Palassini and Young
[7] who showed that certain window overlaps seemed to
become trivial as L — . (See also [8] for a similar dis-
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cussion in two dimensions.) These authors referred to this
property as evidence for a “trivial ground state structure.”
But in our picture the global (infinite distance) structure
is nontrivial, as indicated by 6, = 0, in sharp contrast to
the droplet/scaling picture. Also, in very recent work [9],
Palassini and Young have extended their previous inves-
tigations and have extracted excited states by a quite dif-
ferent method from ours, and they find that their data is
compatible with the TNT scenario. Naturally, there is also
evidence in favor of the nontriviality of window overlaps
[10]. Nevertheless, we believe that our mixed scenario is
a worthy candidate to describe the physics of short range
spin glasses. Furthermore, its plausibility should not be
restricted to three dimensions; it could hold in all dimen-
sions greater than two. (Note that in d = 2, excitations
are necessarily topologically trivial.) An important indi-
cation of this was obtained by Palassini and Young whose
computations [9] favor the TNT scenario over the droplet
picture in the four-dimensional Edwards-Anderson model.
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