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The neutron and proton density distributions obtained in constrained Hartree-Fock-Bogolyubov cal-
culations with the Gogny force along the fission paths of 22Th, 23¢U, 238U, and **°Pu are analyzed.
Significant differences in the multipole deformations of neutron and proton densities are found. The
effect on potential energy surfaces and on barrier heights is studied under an additional constraint by
imposing similar spatia distributions to neutrons and protons, as assumed in Macroscopi c-microscopic

models.
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Experimental analyses of, e.g., electron and «-particle
scattering, pionic atoms, and annihilation of antiprotons,
show that, in most nuclei, neutrons and protons have close
but different rms radii [1]. The main reasons for this dif-
ference are unequal numbers of neutrons and protons, and
the Coulomb interaction between protons.

In the past 25 years, fully microscopic approaches em-
ploying parametrized forms of the effective interaction be-
tween nucleons within a formalism of the Hartree-Fock
type have been devel oped, which usually reproduce experi-
mental proton and neutron rms radii and their differencein
a satisfactory way [2—8]. Corrections coming from oscil-
lations of the mean field, in principle, have to be added,
which dlightly increase nucleon radii. However, they often
may be neglected, except in afew closed shell nuclei and
in nuclel exhibiting shape coexistence [9—-11].

Experimental rms charge radii and isotopic shifts are
also successfully reproduced by macroscopic-microscopic
methods based on the liquid drop model and the Strutin-
sky shell correction technique [12—-14]. Contrary to
microscopic approaches, the proton and neutron mean
fields are not self-consistently determined, but taken as
local potentials of prescribed forms—Nilsson or Saxon-
Woods—with identical spatial deformations.

In deformed nuclei, neutron and proton nuclear den-
sity distributions are expected to have not only different
radii but also different shapes, i.e., different quadrupole
and higher multipole deformations. In Ref. [6], an analy-
sis of theoretical densities based on a surface multipole
moment expansion showed that significant differences be-
tween neutron and proton deformations often occur.

The aim of the present investigation is to check how
large the differences between neutron and proton multipole
deformations along paths to fission are, and to what extent
fission barriers depend on such differences. This study is
based on the constrained Hartree-Fock-Bogolyubov (HFB)
approach with the Gogny effective interaction which had
been extensively used several yearsago to describe actinide

30 0031-9007,/ 00/ 85(1) /30(4) $15.00

fission [15]. Four well-known actinide nuclei, 22Th, 230U,
238y, and 2*0Py, are considered.

Moments of the multipole components of the neutron
and proton densities are first calculated as functions of
quadrupol e deformation using the method described in the
next section. In a second step, aconstraint isintroduced in
the self-consistent calculation in order to impose identical
spatial distributions to neutrons and protons. The resulting
effect on the shape and height of fission barriers can be
viewed as an estimate of the influence of the assumption
usually made in macroscopic-microscopic Strutinsky-type
models (see, e.g., [16—18]), that the neutron and proton
potentials have the same multipole deformations.

The constrained HFB cal culations have been performed
following the method described in Ref. [15]. Axia sym-
metry of the nuclear shapes has been assumed. Nuclear de-
formation along fission paths has been generated by means
of alinear constraint on the nuclear mass quadrupole mo-
ment Oy = >, riP2(cosd;). The two-body effective
nucleon-nucleon interaction has been taken in the form
proposed by Gogny [4], with the set of parameters D1S
[19] adopted since 1983. Let usrecal that thisfinite range
effective force has been proved to give a very satisfactory
ab initio description of the average field and pairing cor-
relations in nuclel, and also of actinide fission barriers.

Generalized multipole moments Q% of the self-
consistent density distributions p(7) are defined by the
following integrals:

0} = f r*P\(cosd)p(7) d*F, (6h)

where P, is a Legendre polynomial of order A. The av-
erage B deformation of multipole A can be taken pro-
portional to the ratio of the moment Qﬁ to the monopole

moment QOF:
Vam(2A + 1) 0F

B/\(k) = k + 3 Q(/)c .
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This definition yields deformation parameters close to theand asymmetric barriers ét>Th are plotted in the upper-
B commonly used to define the shape of the nuclear suideft part of Fig. 2. In this analysis the surface multipole
face in the liquid drop model: moment, i.e.,k = 2, has been chosen. Deformations
obtained withk = 4 are not shown as they are close to
those computed with = 2.

Inserting neutron (respectively, proton) density distribu-
tions into formula (1) allows one to get information about
In particular, for small deviations from the sphere and forthe neutron (respectively, proton) multipole deformations.

R(0,$) = Ro({ﬂA})<1 + > mm(e,@) ®)
A=1

a uniform density distribution, The other three diagrams in Fig. 2 display the differences
B% — BY between neutron and proton deformations in

Balk) = Ba, (4)  22Th. One observes that they strongly depend on defor-

mation and are always negative for prolate deformations.

for any value ofk in Eq. (1). Large values are obtained beyond the second minimum

In Fig. 1, the fission barriers of*Th, 236U, 28U, and  of the fission barrier, especially for octupole and hexade-
*Pu are plotted as functions of the mean value of the nueapole deformations. There, the relative neutron-proton
cleus mass quadrupole momé@tzo) The solid line cor- deformation differencéB} — B41/B, reaches 4% in the
responds to left-right reflection symmetric nuclear shapesjuadrupole case, and exceeds 10%ce 3 and4.
while the dashed line represents the more general asym- The above neutron-proton differences exhibit a similar
metric case. As expected, fission barriers including asymbehavior in?*¢U, 238U, and?*°Pu, although their magni-
metric shapes are lower in these nuclei beyond the isomertoides are not as large as?iTh. As in the latter nucleus,
minimum. HFB energies along the fission paths have beethe largest numbers are obtained for octupole and hexade-
corrected in the usual way [20] from the spurious zero-capole deformations. From these results, one can conclude
point energies associated with the fluctuations of the certhat the rearrangement of the nuclear structure along fis-
ter of mass position, of the angular orientation, and of thesion paths leads to an increase of the difference between
guadrupole deformation of the HFB states. Both one-bodyeutron and proton deformations, the proton multipole de-
and two-body center of mass corrections have been confermations becoming significantly larger than neutron ones
puted. Let us mention that the lowering of the first humpbeyond the fission isomer potential minimum.
of barriers due to triaxial instability is not included in the In order to estimate the influence on fission barriers
curves of Fig. 1. of the differences found between the neutron and proton

The multipole deformation parametersjuadrupole spatial distributions, the HFB calculations have been per-
B2, octupole B3, and hexadecapole8,, defined by formed again, adding a new constraint ensuring that all
Eg. (2—have been evaluated along the different fissionmultipole deformationg,(n) of protons and neutrons are
barriers of Fig. 1. As an example, the multipole defor-equal. This has been done by imposing, at each iteration
mations of the total nuclear density along the symmetriof the HFB procedure, that the neutron and proton density

matrices are proportional to each other:
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FIG. 1. Fission barriers of*?Th, 236U, 28U, and?*°Pu ob- a0 [0] a0 [0]
tained with the HFB method and the Gogny effective interac-
tion. They are drawn as functions of the nucleus total (massFIG. 2. Multipole deformationg8,, A = 2,3,4, of the **Th

quadrupole moments. Center of mass, rotational, and vibradensity (upper left), and the differencg4 — B between neu-
tional corrections are included, as explained in the text. Thdron and proton multipole deformations for symmetric (solid
solid lines represent the fission barriers for reflection symmetriccurves) and asymmetric (dashed curves) fissior?*sth, as
shapes, while the dashed lines correspond to asymmetric fissiofunctions of the total quadrupole moment.
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obtained for second barriers and isomer well energies. In
pp- (5) addition, the shape of the second barrier is slightly altered
in 222Th and, to a lesser extent, in the other three nuclei.
In order to better illustrate the consequences of these
No such condition has been imposed on the neutron anfarrier increases, their influence on spontaneous fission
proton pairing tensors. lifetimes has been estimated. Barrier penetration factors
As expected within a variational framework, the HFB have been calculated using the WKB approximation, with
energies computed with the additional constraint are foungollective inertia parameters computed from the method
higher than those computed without this subsidiary condigiven in Ref. [21]. As a result, constaint (5) leads to spon-
tion. The differences’ Eq., between the HFB energies taneous fission lifetimes increased by factors 9.8, 6.6, 22.4,
computed with and without the additional constraint alongand 2 in*2Th, 2°U, 28U, and**°Pu, respectively.
the fission paths of*2Th, 2¢-23U, and?*°Pu are plotted This work shows that the multipole deformations of
in Fig. 3. As in Figs. 1 and 2, the solid lines representthe proton and neutron density distributions of fissioning
the fission paths for reflection symmetric nuclear shapedjuclei are far from being equal. The relative difference
while the dashed lines correspond to reflection asymmetribetween them often exceeds 10% and undergoes large
ones. One can see that th&,., differences are approxi- variations. This means that the thickness of the neutron
mately 1.5 MeV on the averageit?Pu and?**~238U, with ~ skin does not remain constant as the fissioning nucleus
fluctuations having an amplitude of the order of 1 MeV. elongates. The effect on the nuclear binding energy of
In 232Th, the average energy difference is slightly smallerthese deformation differences is found to be approximately
while stronger oscillations can be observed. 1.5 MeV, with fluctuations of the order of 1 MeV. Clearly,
As a consequence, imposing condition (5) leads, in som#is effect is not negligible when one evaluates the masses
cases, to an increase of fission barrier heights bfMeV.  of isotopes [18] and ther decay and fission lifetimes of
This can be seen in Fig. 4, where the fission barriers comheavy nuclei [16,17].
puted with (dashed line) and without (solid line) constraint As mentioned earlier, macroscopic-microscopic calcu-
(5) are plotted. Here, only the barriers corresponding tdations of potential energy surfaces of fissioning nuclei
reflection asymmetric shapes are displayed. In order t@ssume equal deformations of protons and neutron distri-
better compare the two calculations, the dashed curves akgitions. In the study presented here, some ideas on the
shifted downward in order that the ground state minima irlncertainty this assumption might involve are obtained
the dashed and solid curves coincide. One observes thdtom self-consistent calculations where the proton and
in spite of this shift, constraint (5) almost always leads toheutron density matrices are imposed to be proportional
an increase of the heights of the barrier maxima and ofo each other. Indeed, the proton and neutron mean fields
the isomeric secondary minima. The biggest change od@btained in this way have very close deformations. This
curs inZ3%U, where the height of the first barrier increasesis So because proportionality is applied to the nonlocal as
by 1 MeV. A smaller but sizable= 0.4-0.7 MeV) in-  Well as the local components of the density matrices that
crease of first barrier heights of the other three nuclei can
be seen. In all nuclei except’Pu, similar increases are
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FIG. 3. Differences between the fission barriers obtained without (solid curves) constraint (5) imposing equal deformations to
and without constraint (5) imposing equal deformations to neuneutrons and protons. The dashed curves are shifted downward
trons and protons, if2Th, 23U, 238U, and?*°Pu. in order that ground state minima coincide.
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