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Effect of Differences in Proton and Neutron Density Distributions on Fission Barriers
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The neutron and proton density distributions obtained in constrained Hartree-Fock-Bogolyubov cal-
culations with the Gogny force along the fission paths of 232Th, 236U, 238U, and 240Pu are analyzed.
Significant differences in the multipole deformations of neutron and proton densities are found. The
effect on potential energy surfaces and on barrier heights is studied under an additional constraint by
imposing similar spatial distributions to neutrons and protons, as assumed in macroscopic-microscopic
models.
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Experimental analyses of, e.g., electron and a-particle
scattering, pionic atoms, and annihilation of antiprotons,
show that, in most nuclei, neutrons and protons have close
but different rms radii [1]. The main reasons for this dif-
ference are unequal numbers of neutrons and protons, and
the Coulomb interaction between protons.

In the past 25 years, fully microscopic approaches em-
ploying parametrized forms of the effective interaction be-
tween nucleons within a formalism of the Hartree-Fock
type have been developed, which usually reproduce experi-
mental proton and neutron rms radii and their difference in
a satisfactory way [2–8]. Corrections coming from oscil-
lations of the mean field, in principle, have to be added,
which slightly increase nucleon radii. However, they often
may be neglected, except in a few closed shell nuclei and
in nuclei exhibiting shape coexistence [9–11].

Experimental rms charge radii and isotopic shifts are
also successfully reproduced by macroscopic-microscopic
methods based on the liquid drop model and the Strutin-
sky shell correction technique [12–14]. Contrary to
microscopic approaches, the proton and neutron mean
fields are not self-consistently determined, but taken as
local potentials of prescribed forms—Nilsson or Saxon-
Woods—with identical spatial deformations.

In deformed nuclei, neutron and proton nuclear den-
sity distributions are expected to have not only different
radii but also different shapes, i.e., different quadrupole
and higher multipole deformations. In Ref. [6], an analy-
sis of theoretical densities based on a surface multipole
moment expansion showed that significant differences be-
tween neutron and proton deformations often occur.

The aim of the present investigation is to check how
large the differences between neutron and proton multipole
deformations along paths to fission are, and to what extent
fission barriers depend on such differences. This study is
based on the constrained Hartree-Fock-Bogolyubov (HFB)
approach with the Gogny effective interaction which had
been extensively used several years ago to describe actinide
0031-9007�00�85(1)�30(4)$15.00
fission [15]. Four well-known actinide nuclei, 232Th, 236U,
238U, and 240Pu, are considered.

Moments of the multipole components of the neutron
and proton densities are first calculated as functions of
quadrupole deformation using the method described in the
next section. In a second step, a constraint is introduced in
the self-consistent calculation in order to impose identical
spatial distributions to neutrons and protons. The resulting
effect on the shape and height of fission barriers can be
viewed as an estimate of the influence of the assumption
usually made in macroscopic-microscopic Strutinsky-type
models (see, e.g., [16–18]), that the neutron and proton
potentials have the same multipole deformations.

The constrained HFB calculations have been performed
following the method described in Ref. [15]. Axial sym-
metry of the nuclear shapes has been assumed. Nuclear de-
formation along fission paths has been generated by means
of a linear constraint on the nuclear mass quadrupole mo-
ment bQ20 �

PA
i�1 r2

i P2�cosui�. The two-body effective
nucleon-nucleon interaction has been taken in the form
proposed by Gogny [4], with the set of parameters D1S
[19] adopted since 1983. Let us recall that this finite range
effective force has been proved to give a very satisfactory
ab initio description of the average field and pairing cor-
relations in nuclei, and also of actinide fission barriers.

Generalized multipole moments Qk
l of the self-

consistent density distributions r��r� are defined by the
following integrals:

Qk
l �

Z
rkPl�cosu�r��r� d3 �r , (1)

where Pl is a Legendre polynomial of order l. The av-
erage b deformation of multipole l can be taken pro-
portional to the ratio of the moment Qk

l to the monopole
moment Qk

0 :

bl�k� �

p
4p�2l 1 1�

k 1 3
Qk

l

Qk
0

. (2)
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This definition yields deformation parameters close to t
bl commonly used to define the shape of the nuclear s
face in the liquid drop model:

R�u, f� � R0��bl��

√
1 1

mX
l�1

blYl0�u, f�

!
. (3)

In particular, for small deviations from the sphere and f
a uniform density distribution,

bl�k� � bl , (4)

for any value ofk in Eq. (1).
In Fig. 1, the fission barriers of232Th, 236U, 238U, and

240Pu are plotted as functions of the mean value of the n
cleus mass quadrupole moment� bQ20�. The solid line cor-
responds to left-right reflection symmetric nuclear shap
while the dashed line represents the more general as
metric case. As expected, fission barriers including asy
metric shapes are lower in these nuclei beyond the isom
minimum. HFB energies along the fission paths have be
corrected in the usual way [20] from the spurious zer
point energies associated with the fluctuations of the c
ter of mass position, of the angular orientation, and of t
quadrupole deformation of the HFB states. Both one-bo
and two-body center of mass corrections have been co
puted. Let us mention that the lowering of the first hum
of barriers due to triaxial instability is not included in th
curves of Fig. 1.

The multipole deformation parameters—quadrupole
b2, octupole b3, and hexadecapoleb4, defined by
Eq. (2)—have been evaluated along the different fissi
barriers of Fig. 1. As an example, the multipole defo
mations of the total nuclear density along the symmet
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FIG. 1. Fission barriers of232Th, 236U, 238U, and 240Pu ob-
tained with the HFB method and the Gogny effective intera
tion. They are drawn as functions of the nucleus total (ma
quadrupole moments. Center of mass, rotational, and vib
tional corrections are included, as explained in the text. T
solid lines represent the fission barriers for reflection symmet
shapes, while the dashed lines correspond to asymmetric fiss
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and asymmetric barriers of232Th are plotted in the upper-
left part of Fig. 2. In this analysis the surface multipol
moment, i.e.,k � 2, has been chosen. Deformation
obtained withk � 4 are not shown as they are close t
those computed withk � 2.

Inserting neutron (respectively, proton) density distrib
tions into formula (1) allows one to get information abou
the neutron (respectively, proton) multipole deformation
The other three diagrams in Fig. 2 display the differenc
b

n
l 2 b

p
l between neutron and proton deformations

232Th. One observes that they strongly depend on def
mation and are always negative for prolate deformation
Large values are obtained beyond the second minim
of the fission barrier, especially for octupole and hexad
capole deformations. There, the relative neutron-prot
deformation differencejbn

l 2 b
p
l j�bl reaches 4% in the

quadrupole case, and exceeds 10% forl � 3 and4.
The above neutron-proton differences exhibit a simil

behavior in236U, 238U, and 240Pu, although their magni-
tudes are not as large as in232Th. As in the latter nucleus,
the largest numbers are obtained for octupole and hexa
capole deformations. From these results, one can concl
that the rearrangement of the nuclear structure along
sion paths leads to an increase of the difference betwe
neutron and proton deformations, the proton multipole d
formations becoming significantly larger than neutron on
beyond the fission isomer potential minimum.

In order to estimate the influence on fission barrie
of the differences found between the neutron and prot
spatial distributions, the HFB calculations have been p
formed again, adding a new constraint ensuring that
multipole deformationsbl�n� of protons and neutrons are
equal. This has been done by imposing, at each iterat
of the HFB procedure, that the neutron and proton dens
matrices are proportional to each other:
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FIG. 2. Multipole deformationsbl, l � 2, 3, 4, of the 232Th
density (upper left), and the differencesb

n
l 2 b

p
l between neu-

tron and proton multipole deformations for symmetric (soli
curves) and asymmetric (dashed curves) fission of232Th, as
functions of the total quadrupole moment.
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No such condition has been imposed on the neutron
proton pairing tensors.

As expected within a variational framework, the HF
energies computed with the additional constraint are fou
higher than those computed without this subsidiary con
tion. The differencesdEden between the HFB energie
computed with and without the additional constraint alo
the fission paths of232Th, 236 238U, and240Pu are plotted
in Fig. 3. As in Figs. 1 and 2, the solid lines represe
the fission paths for reflection symmetric nuclear shap
while the dashed lines correspond to reflection asymme
ones. One can see that thedEden differences are approxi-
mately 1.5 MeV on the average in240Pu and236 238U, with
fluctuations having an amplitude of the order of 1 Me
In 232Th, the average energy difference is slightly small
while stronger oscillations can be observed.

As a consequence, imposing condition (5) leads, in so
cases, to an increase of fission barrier heights of�1 MeV.
This can be seen in Fig. 4, where the fission barriers co
puted with (dashed line) and without (solid line) constra
(5) are plotted. Here, only the barriers corresponding
reflection asymmetric shapes are displayed. In order
better compare the two calculations, the dashed curves
shifted downward in order that the ground state minima
the dashed and solid curves coincide. One observes
in spite of this shift, constraint (5) almost always leads
an increase of the heights of the barrier maxima and
the isomeric secondary minima. The biggest change
curs in238U, where the height of the first barrier increas
by 1 MeV. A smaller but sizable (	 0.4 0.7 MeV) in-
crease of first barrier heights of the other three nuclei c
be seen. In all nuclei except240Pu, similar increases are
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FIG. 3. Differences between the fission barriers obtained w
and without constraint (5) imposing equal deformations to ne
trons and protons, in232Th, 236U, 238U, and240Pu.
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obtained for second barriers and isomer well energies.
addition, the shape of the second barrier is slightly alter
in 232Th and, to a lesser extent, in the other three nucle

In order to better illustrate the consequences of the
barrier increases, their influence on spontaneous fiss
lifetimes has been estimated. Barrier penetration fact
have been calculated using the WKB approximation, wi
collective inertia parameters computed from the meth
given in Ref. [21]. As a result, constaint (5) leads to spo
taneous fission lifetimes increased by factors 9.8, 6.6, 22
and 2 in232Th, 236U, 238U, and240Pu, respectively.

This work shows that the multipole deformations o
the proton and neutron density distributions of fissionin
nuclei are far from being equal. The relative differenc
between them often exceeds 10% and undergoes la
variations. This means that the thickness of the neutr
skin does not remain constant as the fissioning nucle
elongates. The effect on the nuclear binding energy
these deformation differences is found to be approximate
1.5 MeV, with fluctuations of the order of 1 MeV. Clearly
this effect is not negligible when one evaluates the mas
of isotopes [18] and thea decay and fission lifetimes of
heavy nuclei [16,17].

As mentioned earlier, macroscopic-microscopic calc
lations of potential energy surfaces of fissioning nucl
assume equal deformations of protons and neutron dis
butions. In the study presented here, some ideas on
uncertainty this assumption might involve are obtaine
from self-consistent calculations where the proton a
neutron density matrices are imposed to be proportion
to each other. Indeed, the proton and neutron mean fie
obtained in this way have very close deformations. Th
is so because proportionality is applied to the nonlocal
well as the local components of the density matrices th
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FIG. 4. Fission barriers for the asymmetric fission of232Th,
236U, 238U, and240Pu, obtained with (dashed curves) and with
out (solid curves) constraint (5) imposing equal deformations
neutrons and protons. The dashed curves are shifted downw
in order that ground state minima coincide.
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generate the average fields, and the two-body interactio
invariant by rotation. Still, this method cannot be consi
ered as an exact simulation of what is done in macroscop
microscopic calculations. In this sense, our analysis do
not rigorously demonstrate that the latter systematica
overestimate fission barriers by 1 MeV or so. One mu
note that only the fluctuating part ofdEden can actually
influence barrier heights calculated with the macroscop
microscopic approach, since the average value of t
difference can be taken into account in the fitting of th
parameters of the macroscopic (e.g., liquid drop) mode

The results of this work suggest that it might be usef
to generalize the currently used macroscopic-microsco
approaches in order to allow protons and neutrons to h
different multipole deformations. One could start from th
energy prescription:

EStrut��b
p
l �, �bn

l�� � Emacr ��b
p
l �, �bn

l��

1 dE
p
micr ��b

p
l �� 1 dEn

micr ��b
n
l�� ,

(6)

where both the macroscopic and the microscopic com
nents depend on proton and neutron deformations. Th
performing a minimization with respect to, e.g., the ne
tron multipole deformations, while keeping proton de
formations as independent variables, should give a m
realistic description of potential energy surfaces. Deta
of such a method, as, for instance, the way to genera
macroscopic models in order to include different deform
tions for protons and neutrons, are left for future study.
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