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Conduction through a Quantum Dot near a Singlet-Triplet Transition

M. Pustilnik1,2 and L. I. Glazman3

1Danish Institute of Fundamental Metrology, Anker Engelunds Vej 1, Building 307, Lyngby 2800, Denmark
2Ørsted Laboratory, Niels Bohr Institute, Universitetsparken 5, Copenhagen 2100, Denmark

3Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455
(Received 25 May 2000)

Kondo effect in the vicinity of a singlet-triplet transition in a vertical quantum dot is considered. This
system is shown to map onto a special version of the two-impurity Kondo model. At any value of
the control parameter, the system has a Fermi-liquid ground state. Explicit expressions for the linear
conductance as a function of the control parameter and temperature T are obtained. At T � 0, the
conductance reaches the unitary limit �4e2�h at the triplet side of the transition, and decreases with the
increasing distance to the transition at the singlet side. At finite temperature, the conductance exhibits a
peak near the transition point.

PACS numbers: 72.15.Qm, 73.23.Hk, 73.40.Gk, 85.30.Vw
The number of electrons N in a Coulomb-blockaded dot
is a well-defined quantity at low temperatures. The exis-
tence of a finite energy gap for excited states carrying a dif-
ferent charge, e�N 6 1�, normally results in a suppressed
low-temperature conductance through the dot. However,
the suppression may be largely lifted [1] if N is odd. This
phenomenon is explained in terms of the Kondo effect [2].
In the case of tunneling through a spin-degenerate state,
the conductance may reach the unit quantum 2e2�h, which
corresponds to a perfect transmission [3] through the dot.
The origin of the perfect transmission is in the formation
of a “Kondo cloud” consisting of the itinerant electrons
of the leads, which tends to screen the spin of the dot.
The formation of such a collective state is accompanied
by the appearance of the resonance for electrons right at
the Fermi energy. Of course, this effect takes place only
if the dot has a nonzero spin in the ground state. This is
always the case for odd N . If N is even, then the spin of
the dot is typically zero. However, if the spacing d be-
tween the last doubly occupied and the following empty
one-electron states in the dot is anomalously small, then
the exchange interaction, according to Hund’s rule, favors
the triplet ground state of the dot [4]. For a quantum dot
formed in a GaAs heterostructure, d can be tuned by means
of a magnetic field. Indeed, because of a very small elec-
tron effective mass, magnetic field applied perpendicular
to the plane of electron gas has a strong orbital effect. At
a certain critical value of d the singlet-triplet transition oc-
curs. Tuning through such a transition was demonstrated
recently in the experiments on vertical quantum dots [5].
A similar effect also occurs in lateral devices [6]. The ap-
plied magnetic field causes also spin splitting. However
the Zeeman energy, which lifts the spin degeneracy, may
remain sufficiently small, even compared with the Kondo
temperature, because of a small value of the effective g-
factor. Therefore the Kondo effect persists throughout the
entire domain of parameters corresponding to the triplet
spin state.
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The singlet-triplet transition was addressed in the recent
paper [7], where a quite special model of the quantum dot
was considered. As can be shown, the additional sym-
metries assumed in [7] may result in a non-Fermi-liquid
behavior at the transition point.

As we show below, a generic model of a quantum dot un-
dergoing the singlet-triplet transition allows for a mapping
onto the two-impurity Kondo model. Using this mapping,
we found that at finite temperature, the conductance G is a
nonmonotonic function of the control parameter K with an
asymmetric peak near the transition point K � K�. The
asymmetry becomes more pronounced at lower tempera-
tures, and G�K� becomes constant (�4e2�h) at T � 0 at
the triplet side of the transition (K , K�), but decreases
monotonously with K at K . K�. Despite the appar-
ent nonanalyticity of G�K�, the system has a Fermi-liquid
ground state for all K , including the transition point.

The magnetic properties of a quantum dot can be under-
stood from the following Hamiltonian:

Hdot �
X
ns

endy
nsdns 2 EsS2 1 EC�N 2 N �2. (1)

Here, N �
P

ns dy
nsdns is the number of electrons in the

dot, S �
P

nss0 d
y
ns� �sss0�2�dns0 is the dot’s spin, and the

parameters EC and Es are the charging and exchange en-
ergies [8]. We restrict our attention to the very middle of
a Coulomb blockade valley with an even number of elec-
trons in the dot (the dimensionless gate voltage N is tuned
to an even integer value). We assume that the spacing d

between the last filled and first empty orbital states is of
the order of Es, and that d is tunable, e.g., by means of
a magnetic field B. In order to model the singlet-triplet
transition in the ground state of the dot, it is sufficient to
consider these two states; we will assign indices n � 61
to them. The four low-energy states of the dot can be clas-
sified according to their spin S � 0, 1 and its z projection
Sz . Labeling the states by these two quantum numbers,
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jS, Sz�, we find

j11� � d
y
11"d

y
21"j0�, j1 2 1� � d

y
11#d

y
21#j0� ,

j10� �
1
p
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y
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j00� � d
y
21"d

y
21#j0� ,

(2)

where j0� is the ground state of the dot with N 2 2
electrons. Projected onto these states, the Hamiltonian of
the dot becomes (up to a constant)

P HdotP �
K0

4

X
S,Sz

jS, Sz� �dS,1 2 3dS,0� �S, Szj , (3)

where K0 � d 2 2Es is the energy difference between the
singlet and the triplet, and P is the projection operator on
the system of states (2).

Upon the variation of magnetic field B, the singlet-triplet
transition occurs at K0 � 0. Unlike the special case con-
sidered in Ref. [7], we are interested in the generic model
with Es fi 0 at the transition point.

In a vertical dot device, the potential creating lateral con-
finement of electrons most probably does not vary much
over the thickness of the dot [5]. Therefore we assume that
the electron orbital motion perpendicular to the axis of the
device can be characterized by the same quantum number
n inside the dot and in the leads; this quantum number is
conserved in the process of tunneling. Thus, our model
consists of the Hamiltonian of the dot, already discussed
above, the Hamiltonian of the leads

Hl �
X

anks

jkc
y
ankscanks , (4)

and the tunneling Hamiltonian:

HT �
X

anks

tanc
y
anksdns 1 H.c. (5)

Here a � R, L for the right/ left lead, and n � 61 for the
two orbitals participating in the singlet-triplet transition; k
labels states of the continuum spectrum in the leads, and
s is the spin index. After a rotation in the R-L space,√

cnks

fnks

!
�

1
tn

√
tRn tLn

2tLn tRn

! √
cRnks

cLnks

!
,

the f field decouples: HT �
P

nks tnc
y
nks dns 1 H.c.;

here t2
n � t2

Ln 1 t2
Rn. Next we integrate out the virtual

transitions to the states with N 6 1 electrons by means
of the Schrieffer-Wolff transformation. The resulting
effective low-energy Hamiltonian includes the operators

Snn0 � P
X
ss0

dy
ns

�sss0

2
dn0s0P .

The effective Hamiltonian may be conveniently written
in terms of two fictitious 1�2 spins S1,2 which represent
the same symmetries as the set of states (2). This one-
to-one correspondence between the basis states allows us
to represent operators Snn0 in terms of S1,2. We find the
following relations:
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1
2

�S1 1 S2� �
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2

S1 ,

X
n

S2n,n �
1
p

2
�S1 2 S2� �

1
p

2
S2 ,

X
n

inS2n,n �
p

2 �S1 3 S2� �
p

2 T .

(6)

Using (6), the effective Hamiltonian is written in a form,
resembling [9] the two-impurity Kondo model [10]:

H �
X
nks

jkc
y
nkscnks 1 K�S1 ? S2� 1

X
n

Hn , (7)

Hn � Jn�snn ? S1� 1 Vnrnn�S1 ? S2�

1
I
p

2
��s2n,n ? S2� 1 2in�s2n,n ? T�� . (8)

Here the particle and spin densities in the continuum are

rnn �
X
kk0s

c
y
knsck0ns, snn0 �

X
kk0ss0

c
y
kns

�sss0

2
ck0n0s0 ,

and the bare values of the coupling constants are

Jn �
2t2

n

EC
, I �

2t11t21

EC
, V �

t2
11 1 t2

21

2EC
.

(9)

We did not include in Eq. (7) the Hamiltonian of the
f field, and other terms which are irrelevant for the
low-energy renormalization. The Schrieffer-Wolff trans-
formation also produces corrections to K0, so K does
not coincide with its bare value. This difference is not
important, as it only affects the position of the singlet-
triplet transition, but not its nature. A common factor I in
the last two terms of Eq. (8) comes from the conservation
of the orbital index n; see Eq. (5).

To simplify the analysis of Eqs. (7)–(9), we further re-
strict our attention to the symmetric case tan � ta , for
which the definition (9) reduces to

Jn 	 J � I � 2V � 2�t2
L 1 t2

R��EC . (10)

This simplification is adequate to the experimentally
relevant case of very thin barriers separating the dot from
the leads, and, more importantly, only insignificantly af-
fects the low-energy properties of the model. To calculate
the differential conductance in the leading logarithmic
approximation, we apply the “poor man’s” scaling
technique [11]. The procedure consists of a successive
integration out of the high-energy degrees of freedom, and
yields the set of scaling equations

dJ
dL

� n�J2 1 I2�,
dI

dL
� 2nI�J 1 V � ,

dV
dL

� 2nI2,

(11)

with the initial conditions (10). Here L � lnEC�D, and
n is the density of states in the leads; the initial value
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of the energy cutoff D is D � EC . This procedure also
generates nonlogarithmic corrections to K . In the follow-
ing we absorb these corrections in the redefined value of
K . Equations (11) are valid for D ¿ jKj, T .

At certain value of L � L0, the inverse coupling con-
stants simultaneously reach zero:

1�J�L0� � 1�I�L0� � 1�V �L0� � 0 .

This defines, through the equation L0 � lnEC�T0, the
characteristic energy scale of the problem:

T0 � Ec exp�2t0�nJ�0�� .

Here t0 is a parameter that depends on the initial conditions
and should be found numerically. We obtained t0 � 0.36
(see Fig. 1). Thus, the strong coupling regime is reached at
much higher temperatures than in the usual Kondo model
(for which the Kondo temperature would be given by the
same expression as T0, but with t0 � 1).

The solution of the renormalization group (RG) equa-
tions (11) can now be expanded near L � L0. To the first
order in L0 2 L � lnD�T0, we obtain

1
nJ

�

p
l

nI
�

l 2 1
2nV

� �l 1 1� lnD�T0 , (12)

where l � 2 1
p

5 
 4.2 is a model-independent constant,
i.e., it does not change if the restriction tan � ta is lifted.

The solution (12) can be used to calculate the differ-
ential conductance at high temperature T ¿ �K�, T0. In
this regime, the coupling constants are still small, and the
conductance is obtained by applying a perturbation theory
to the Hamiltonian (7)–(8) with renormalized parameters.
This yields

G�G0 � A ln22T�T0 , (13)

where

A � �3p2�8� �l 1 1�22�1 1 l 1 �l 2 1�2�8� 
 0.9

is a numerical constant, and

G0 �
4e2

h

µ
2tLtR

t2
L 1 t2

R

∂2

. (14)

Note that (13) includes contributions from both the pro-
cesses conserving the orbital index [the first two terms

x(τ) y(τ)

z (τ)

0.1 0.2 0.3

1

0
τ

FIG. 1. Numerical solution of the scaling equations. The RG
equations (11) are rewritten in terms of the new variable t �
nJ�0� lnEC�D and the new functions x�t� � J�0��J�t�, y�t� �
I�0��I�t�, and z�t� � V �0��V �t�. The three functions reach
zero simultaneously at t � t0 � 0.36.
in Eq. (8)], and the processes involving an interorbital
scattering.

Away from the singlet-triplet degeneracy point, jKj *

T0, the RG flow yielding Eq. (13) terminates at energy
D � jKj. At the triplet side of the transition (K , 0), the
two spins S1,2 are locked into a triplet state. The system
is described by the effective two-channel Kondo model
with S � 1 impurity, obtained from Eqs. (7) and (8) by
projecting out the singlet state:

Htriplet �
X
nks

jkc
y
nkscnks 1 Jt

X
n

�snn ? S� 1 Vt

X
n

nrnn,

where Jt � J�jKj�, and Vt � V �jKj��4. As D is fur-
ther lowered, Jt is governed by the standard Kondo RG
equation

dJt�dL � nJ2
t , L � lnD��K� .

The solution of this equation, 1�nJt�D� � lnD�Tk , is
expressed through the K-dependent Kondo temperature
Tk�K� � �K� exp�21�nJt�, which, using (12), is in turn
expressed through T0 as

Tk�T0 � �T0�jK j�l. (15)

Recall that the exponent here, l 
 4.2, is universal. Equa-
tion (15) was obtained also in [7], but with a rather differ-
ent value of the exponent l (according to [7], l # 1 and
appears to be nonuniversal).

Since Vt is not renormalized, the differential conduc-
tance at T ø 2K is dominated by the exchange (the sec-
ond term in Htriplet) and is given by

G�G0 � f�T�Tk� � f

"
T
T0

µ
jKj

T0

∂l
#

, (16)

where f�x� is a smooth function that interpolates between
f�x ¿ 1� � �p2�2� ln22x and f�0� � 1. It coincides
with the scaled resistivity f�T�TK� � r�T�TK ��r�0� for
the symmetric two-channel S � 1 Kondo model. The
conductance at T � 0 (the unitary limit value), G0, is
given above in Eq. (14); see also Fig. 2.

On the singlet side of the transition, K * T0, the scal-
ing terminates at D � K , and the low-energy effective
Hamiltonian is

Hsinglet �
X
nks

jkc
y
nkscnks 1 Vs

X
n

nrnn ,

G0

>> T0T

T= 0

-T 0 T0 K0

G

T

FIG. 2. K dependence of the differential conductance at two
different temperatures. The two asymptotes merge at K ¿ T , T0.
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where Vs � 23V �K��4. The conductance at temperatures
T ø K is given by

G�G0 � B ln22K�T0, B �

µ
3p

8
l 2 1
l 1 1

∂2


 0.5 .

(17)

The only regime of parameters left beyond the range
of the validity of Eqs. (13), (16), and (17) is that of the
very vicinity of the singlet-triplet transition K � 0 at low
temperature T & T0. Understanding of this regime re-
quires knowledge of the properties of the system’s ground
state. This can be inferred from the following simple
symmetry-based argument, devised originally for the two-
impurity Kondo model [10]. The Hamiltonian (7), (8) in
the symmetric case Jn � J is invariant with respect to the
particle-hole transformation

cn,k,s ! sc
y
2n,2k,2s . (18)

Consider now the scattering problem at the Fermi energy:

Fout
ns � Sns,n0s0F

in
n0s0 . (19)

Particle-hole symmetry (18) implies that for any Fin�out�

which solves Eq. (19), Fin�out� � iSFout�in� will be a so-
lution as well (here Sns,n0s0 � s

y
ss0s

x
nn0 , and si are the

Pauli matrices). Substituting this into (19) one finds a re-
lation for the S matrix: �SS�2 � 1. Among the diagonal S,
this is satisfied by Sns,n0s0 � dnn0dss0e22inu with arbitrary
u. In other words, the particle-hole symmetry imposes
a restriction on the scattering phase shifts at the Fermi
energy: uns � nu. The phase u and therefore scattering
phases uns vary continuously from 6p�2 to 0 as K is var-
ied from K � 2` to K � 1`. At the triplet side of the
transition, 2K ¿ T0, the low-temperature physics is de-
scribed by the effective two-channel S � 1 Kondo model,
as discussed above. In that model, the zero-energy phase
shift u 	 p�2. This means that there exists K� * 2T0
such that u�K� � p�2 for all K , K�. On the other
hand, at the singlet side of the transition, u�K� decreases
with K logarithmically at large positive K ¿ T0, but ap-
proaches p�2 at smaller K because of larger values of Vs

in Hsinglet. We expect therefore that u�K� is a continu-
ous, though a nonanalytical, function. The singlet-triplet
transition may be associated with the point of the non-
analyticity K � K�. According to these arguments, it is
natural to conjecture that the Fermi-liquid description [12]
is applicable at all K and thus the conductance at T � 0
is G � G0 sin2u�K�. The interorbital scattering processes
make no contribution to G in this regime, unlike at high
temperature T ¿ jKj, T0.

It should be noticed that the problem under considera-
tion is quite different from what one faces if the Zeeman
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splitting is the leading effect of the magnetic field [13]
(which may happen if the magnetic field is applied in the
plane of the lateral dot). In this case, the twofold degener-
acy of the ground state of an isolated dot appears only at
one special value of magnetic field, such that the Zeeman
energy equals d. Accordingly, G�T , B� exhibits a Kondo
peak at this strength of the field at all temperatures.

To conclude, we considered the linear conductance
G�T , K� of a vertical quantum dot near the singlet-triplet
transition. The transition occurs due to the strong orbital
effect of an external magnetic field. At high temperature
G exhibits a peak near the transition point, in agreement
with the experiments [5]. At low temperature G reaches
the unitary limit value at the triplet side of the transition,
and decreases monotonously at the singlet side (see
Fig. 2). The characteristic energy scale of the effect is
much larger than that for the usual Kondo effect with the
similar system parameters.
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