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Fast NMR imaging was used to measure the density profile of a three-dimensional granular medium
fluidized by vertical vibrations of the container. For container acceleration much larger than gravity,
the rise in center of mass of the granular medium is found to scale as y

a
0 �N

b

� with a � 1.0 6 0.2
and b � 0.5 6 0.1, where y0 is the vibration velocity, and N� is the number of layers of grains in the
container. This value for a is significantly less than found previously for experiments and simulations
in one dimension (a � 2) and two dimensions (a � 1.3 1.5).

PACS numbers: 45.70.Mg, 76.60.Pc, 81.05.Rm
One technologically important way to fluidize a granular
medium such as sand is to vibrate the walls containing the
system. Basic issues include the scaling of the kinetic and
the potential energy of the grains with parameters such
as the frequency and the amplitude of the wall vibration,
and the number of layers of grains. These scaling relations
are not yet fully understood for multidimensional systems,
despite progress in simulations [1], experiments [2], and
theory [3,4].

We consider a granular system in gravity excited by pe-
riodic vertical motion of the container z�t� � z0 cos�vt�.
When the dimensionless acceleration G � z0v2�g is
larger than unity, the granular system enters a state of
internal motion determined in part by G, the dimensionless
frequency v � v�d�g�1�2, and the aspect ratio of the
system. Here, g is the acceleration of gravity and d is the
grain diameter, so �d�g�1�2 is the time for a grain to fall
through its radius [1]. For v ø 1, the container vibration
induces large-scale structures in the granular medium
such as density and surface waves. Surface structures are
also observed for larger v � 1 in very low aspect-ratio
systems that permit small-wave-number symmetry break-
ing [5,6]. Conversely, for v ¿ 1 the container vibration
is fast compared with the grain-scale motion. In this
limit, the granular medium can assume a fluidized state
analogous to a gas or liquid, and possibly amenable to
theoretical methods developed for such systems [2,3,7–9].
The major distinguishing characteristic of a granular fluid
is the continuous energy loss to inelastic collisions, which
if sufficiently great can destroy the statistical uniformity
of the system via inelastic collapse [10].

In this paper we report an experimental study of a
three-dimensional granular system in the fluidized regime
v � 4, G # 14. Past numerical and experimental work
has concentrated on one- and two-dimensional systems
[1,2,11–14], due in part to limited computational re-
sources and the lack of experimental methods suitable
for examining the interiors of dense, flowing three-
dimensional media. Three-dimensional vibrated granular
systems have been studied previously at lower v by
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observing the height rise of a lid [15,16] or by using an
inductive pickup [16].

Recently, nuclear magnetic resonance (NMR) has
emerged as a powerful noninvasive method for studying
three-dimensional granular media [17–19]. In the experi-
ments reported here, NMR imaging was used to measure
the density distribution during continuous vibration of
the container. Incoherent grain motion limited image
acquisition time to approximately 1 ms, too short to
permit ordinary two-dimensional imaging. Therefore one-
dimensional images were acquired showing the density
projected onto the vertical axis r�z�. We find that
r�z� deviates strongly from the exponential form e2Cz

expected for a dilute isothermal gas in gravity [3]. We
focus here on the scaling of the gravitational potential
energy, as measured by the center-of-mass height, with G

and the number of grain layers N�. In the present three-
dimensional experiments, the scaling is found to deviate
even more strongly from ideal-gas predictions than was
found in earlier two-dimensional studies [2,13].

The granular medium used for these experiments
was composed of mustard seeds, of mean diameter
d � 1.8 mm and mass 4.0 mg. Under magnification, the
seeds appeared roughly spherical with typical eccentricity
615%. Seeds are used because their oily centers give
strong, long-lived NMR signals [17,18]. The seeds
were held in a cylindrical container formed by a vertical
glass tube of inside diameter 0.8 cm with a flat Teflon
bottom wall. The container was sufficiently tall to prevent
collisions between the seeds and the top wall. It was
determined visually that the number of seeds required to
complete a monolayer in this container was 18 6 2. The
number of layers N� was determined by counting the seeds
and dividing by the monolayer number. The experiments
were carried out under ambient atmospheric pressure.

A vertical Fiberglas tube was used to support the con-
tainer at the center of the NMR probe, which was installed
in a vertical-bore superconducting solenoid. The static
field was set to B0 � 1.00 T to reduce susceptibility con-
trast effects in these highly inhomogeneous samples. The
© 2000 The American Physical Society
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lower end of the Fiberglas tube was mounted to a loud-
speaker, driven by a function generator and power ampli-
fier, to provide vertical vibrations of the container. The
waveform and amplitude of the vertical motion were mea-
sured by a micromachined accelerometer (Analog Devices
ADXL50) mounted to the Fiberglas tube, close to the NMR
probe. This accelerometer was initially calibrated against a
more accurate unit, and its output was digitized and fitted.
Data were taken at two values of the vibration frequency
v�2p � 50 and 40 Hz. Acceleration values were set to
within 60.05g.

One-dimensional NMR images were obtained using a
spin-echo sequence. Gradient pulses of fixed amplitude
61.5 mT�m were used to encode vertical position informa-
tion and an echo time TE � 1.0 ms was selected. Thus,
the entire imaging sequence was complete within 1.5 ms.
These parameters were chosen to achieve adequate spatial
resolution dz � 800 mm within a time much smaller than
the vibration period while holding signal loss due to in-
coherent grain motion to an acceptably small level. This
loss, measured by the echo size, was greater for smaller
samples and larger vibration amplitudes. For a midsize
sample with N� � 3, the loss was approximately 10% at
the highest amplitude used.

The NMR acquisition was triggered synchronously with
the sample vibration. For each value of N� and G, data
for 100 different trigger delays spread uniformly over the
vibration period were averaged together. Thus, the data
presented here represent the sample density averaged over
the vibration cycle. To remove effects of rf-field inhomo-
geneity the data were normalized to data obtained for a
stationary water-filled tube.

Figure 1 shows the vertical density profile as a function
of G for one of the �N�, v� points used. With no vibration
(G � 0) the profile is deeply corrugated, reflecting the lay-
ering of grains in the stationary chamber. As the vibration
amplitude is increased, the layer structure is smoothed out.
This is due to the relative motion of the grains and not sim-
ply the vertical motion of the chamber, as the latter has an
amplitude z0 that is less than the grain diameter for most of
our data. In addition, the typical grain motion is less than
z0 at high G. Because v . 1, the grains do not fall fast
enough to follow the container motion on its downwards
stroke.

Even at the highest G used, it is clear from Fig. 1 that the
density profile deviates strongly from the exponential form
expected for an isothermal ideal gas. Although the density
tail at the upper (free) surface might reasonably be fit to
an exponential, the density levels off and then decreases as
the lower surface is approached. This agrees qualitatively
with features observed in experiments and simulations for
two-dimensional systems [2,13]. The shape of the lower
surface depends somewhat on our choice to present r�z�
averaged over the vibration cycle, but the large deviations
from an exponential profile that occur over the central por-
tion of the sample are qualitatively the same for averaged
and unaveraged data.
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FIG. 1. Density profiles r�z� for N� � 2.8 grain layers vi-
brated at 40 Hz (v � 3.41). The acceleration of the vibration
relative to gravity G was varied from 0 to 14. The height coor-
dinate z is normalized by the particle diameter d. The zero for
the z�d axis is arbitrary, as are the units of the density axis. The
doubled-headed arrow shows the peak-to-peak container excur-
sion 6z0 for the largest G used. With no vibration (G � 0), the
grains are organized in distinct layers which appear as peaks in
r�z�. At high values of G, the layer structure is eradicated and
a smooth density profile is observed.

To quantify the gravitational potential energy of the sys-
tem, we have computed the center-of-mass height hc.m. �
�
R

zr�z� dz���
R

r�z� dz�. For each N�, the limits of inte-
gration were kept fixed as G was varied. Then the rise in
center-of-mass height Dhc.m. was computed by subtracting
the G � 0 value of hc.m. for the same N�. With this pro-
cedure, Dhc.m. gives the mean vertical displacement of the
grains due to vibration relative to the time-averaged con-
tainer position. The normalized center-of-mass rise data
for 50 Hz vibration frequency are shown in Fig. 2.

Small systematic dips can be noted in Fig. 2 for specific
values of N� (e.g., 5.6). These do not reflect special states
of the fluidized �G ¿ 1� state for these N� values, but
rather variations in the static �G � 0� packing of the par-
ticles which affect the subtraction used to compute Dhc.m..
These dips could be removed from Figs. 2 and 3 by fit-
ting Dhc.m. to determine the G � 0 limit of the fluidized
state. We prefer to display the data subtracting the mea-
sured G � 0 hc.m. to avoid prejudging the functional form.

To ascertain the functional form, we have plotted the
Dhc.m. data scaled by various powers of z0 and v. Figure 3
shows the best data collapse obtained in this way, which
is found to be Dhc.m.�y0. Here y0 � y0��dg�1�2 is the
velocity amplitude of the vibration y0 � vz0, normalized
by the velocity �dg�1�2 of a grain after it falls from rest
through its radius. In this plot, the data for low acceleration
G # 6 do not collapse while the data for high acceleration
G . 6 all collapse onto a single function of N�. The
collapse is significantly better for Dhc.m.�y0 than it is for
Dhc.m.�y

0.5
0 or Dhc.m.�y

1.5
0 , from which we conclude that
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FIG. 2. Rise in the center of mass of the grains relative to the
average container height, as a function of number of layers N�

and acceleration G at vibration frequency 50 Hz (v � 4.26).
The center-of-mass rise Dhc.m. is normalized by the grain diame-
ter d. The legend gives the G value for each set of symbols.
Error bars typical of the entire data set are shown on some
symbols.

Dhc.m. scales as y
a
0 with a � 1.0 6 0.2. As shown by

the dashed line in Fig. 3, the variation of Dhc.m. with N� at
high G is approximately N

21�2
� . From plots such as this for

a range of exponents, we ascertain that Dhc.m.�y0 ~ N
2b

� ,
with b � 0.5 6 0.1.

The scaling with v cannot be determined from a data set
at fixed vibration frequency as shown in Fig. 3. When the
data for vibration frequency 40 Hz are added to the scaling
plot, it appears that the velocity vz0 is a better scaling
variable than is the amplitude z0 or the acceleration v2z0.
However, due to the limited variation of v this conclusion
is not firmly established by our experiments.

The simplest model for a vibrofluidized granular
medium is the elastic hard-sphere gas. In this model
the mean grain velocity is proportional to the container
vibration velocity, and the potential energy is proportional
to the kinetic energy; hence, Dhc.m. ~ y

2
0 . This velocity

scaling has been observed in experiments and simulations
of one-dimensional granular systems (columns of nearly
elastic beads) [12]. Two-dimensional experiments [2] and
simulations [13] found Dhc.m. ~ y

a
0 with significantly

smaller a � 1.3 1.5, a result that is only partially un-
derstood [1,4]. From a phenomenological viewpoint, our
result a � 1 in three dimensions appears to continue the
trend with increasing dimensionality away from elastic
kinetic-theory predictions.

For a less superficial understanding, we must consider
the reasons for deviations from ideal-gas theory that have
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FIG. 3. The data of Fig. 2, divided by the dimensionless vi-
bration velocity y0 and plotted on log axes. The symbols are
the same as in Fig. 2. The eight curves for G � 7 14 lie nearly
on top of one another, implying that Dhc.m. scales as y

a
0 with

a � 1. The dashed line is the function �0.95��N
1�2
� .

been proposed. The steady state of the granular system is
determined by a balance between work done on the grains
by collisions with the vibrating container bottom and en-
ergy lost due to inelastic collisions between the grains [1].
Other loss mechanisms discussed in the literature but not
considered here include collisions with the side walls and
viscous damping due to interstitial gas [3].

We first discuss the power Pi that is fed into the trans-
lational degrees of freedom by collisions with the vibrat-
ing bottom wall. An important dimensionless parameter
is the ratio of the mean random grain velocity yg to the
characteristic wall vibration velocity y0. For nearly elastic
systems (restitution coefficient close to one) with a small
number of layers N�, it is possible to have yg�y0 * 1.
Conversely, less elastic systems (including our experimen-
tal system) generally have yg�y0 ø 1 in the uniformly
fluidized state at large v.

Collisions between the grains and the vibrating bottom
wall always transfer upward momentum to the grains, but
do positive work on the grains only when the wall is mov-
ing upward. When yg�y0 ø 1 the grains are unable to
catch up with the wall on its downward stroke. In this case,
equating the momentum transfer per unit time with the
sample weight ~ N� gives the rigorous result Pi ~ y0N�

[20]. The same result is obtained for an asymmetric saw-
tooth vibration waveform (infinitely fast downward stroke)
for any value of yg�y0. Thus the symmetry of the drive
waveform is significant only when yg�y0 * 1 [20]. For
a symmetric waveform, it has been suggested and verified
for two-dimensional simulations that Pi ~ y0N�f�yg�y0�,
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where f�0� � 1 and f�x� is a decreasing function of x
[1]. McNamara and Luding [1] fit their simulation data
for symmetric drive waveforms to f�x� � e2Dx . We sug-
gest their data may also be approximately represented
by f�x� � 1��1 1 x�. For large yg�y0, this gives Pi ~

y
2
0N��yg, a result that has been derived directly from ki-

netic theory for symmetric drive waveforms in the nearly
elastic limit [3].

For a dilute, nearly elastic, isothermal system, kinetic
theory predicts that the density decays exponentially with
height and the power lost due to collisions Pc ~ N2

� yg

[3]. Here isothermal denotes uniform granular tempera-
ture T ~ y2

g. In this limit, potential energy is strictly pro-
portional to kinetic energy, Dhc.m. ~ T . Setting Pc � Pi ,
for yg�y0 ø 1 or a sawtooth waveform, the granular tem-
perature scales as T ~ y

2
0�N2

� . For symmetric waveforms
with yg�y0 ¿ 1 the scaling is T ~ y

2
0�N� [3]. The latter

corresponds well to experiments and simulations for one-
dimensional systems [12], but not for two-dimensional
systems [2,13] or the three-dimensional experiment re-
ported here.

Huntley [4] has suggested that correlations between
grain motions at high density reduce the collision fre-
quency below the kinetic-theory result for an ideal gas.
The power lost due to collisions is found to scale as
Pc ~ N

3�2
� y2

g. Combining this with the yg�y0 ¿ 1

result for Pi , Huntley found T ~ y
4�3
0 �N

1�3
� . This is

much closer to the experimental and simulation results
for two-dimensional systems than is the unmodified
kinetic-theory prediction. If Huntley’s expression for Pc

is set equal to Pi for the yg�y0 ø 1 condition appropriate

to the present experiments, we obtain T ~ y0�N
1�2
� . This

agrees well with the scaling seen in our experiments.
As yg�y0 is determined in part by the inelasticity of
collisions, this suggests that the degree of inelasticity may
be the controlling factor for scaling exponents rather than
the system dimension.

Recently, McNamara and Luding [1] carried out a se-
ries of two-dimensional simulations in which Pi , Pc, T ,
and Dhc.m. were measured as the relevant dimensionless
parameters were varied. As expected, they found Dhc.m. ~

T ~ y
2
0 in the limit of very low density that occurs at high

drive velocity y0. For lower y0, they found a crossover
to T ~ y

3�2
0 which they traced to a reduction of Pc be-

low its kinetic-theory value when Dhc.m. is small. The
detailed mechanism for this reduction is unknown, so it is
not clear how these results can be applied to the present
three-dimensional experiments. McNamara and Luding
also found that Dhc.m. ~ T is not well obeyed at high
densities.

The trend found in Ref. [1] of reduced power loss to
collisions at high density agrees with Huntley’s sugges-
tion, although the functional form may be different. As
the power input Pi appears reasonably well understood,
we also interpret our experiments as indicating reduced
power loss to collisions Pc for dense granular systems
in three dimensions, as compared with ideal-gas kinetic-
theory predictions.
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