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Four Regimes of Decaying Grid Turbulence in a Finite Channel
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Attenuation of second sound in helium II has been used to observe up to 6 orders of magnitude of
decaying vorticity displaying four distinctly different regimes of decaying grid turbulence in a finite
channel. A purely classical spectral model for homogeneous and isotropic turbulence describes most
of the decay of helium II vorticity in the temperature range 1.2 , T , 2 K. The four regimes switch
successively as the energy-containing and dissipative Kolmogorov length scales gradually grow during
the decay, finally both being saturated by the size of the channel.

PACS numbers: 67.40.Vs, 47.27.Gs, 47.37.+q
Homogeneous and isotropic turbulence (HIT) and its de-
cay have been the subject of extensive theoretical and ex-
perimental studies for most of the last century, which have
led to a better fundamental understanding of the phenome-
non of fluid turbulence in general. Numerous investigators
have studied grid turbulence, regarded as nearly homoge-
neous and isotropic, as it decays downstream in a wind
tunnel. Other investigations have involved observation of
temporal decay of turbulence created by an oscillating or
towed grid in a fluid under study. It is desirable to study
the decay of high Reynolds number (Re) HIT possessing
a well-developed inertial range. The extremely low vis-
cosity of helium II, lowest of all known substances, al-
lows such a goal to be reached in an apparatus of small
size and under controlled laboratory conditions. We use a
technique reported in [1,2], where turbulence is created by
towing a grid with velocity Vg through a stationary sample
of helium II and the flow is probed by second sound at-
tenuation that depends on the quantized vortex line length
per unit volume, L. A wide range of mesh Reynolds
numbers (2 3 103 # ReM � VgMr�m # 2 3 105) can
be achieved easily in a small 1 3 1 3 29 cm3 channel us-
ing a grid with mesh size M � 0.167 cm. Here m is the
dynamic viscosity and r is the density of helium II.

Helium II is a quantum fluid displaying superfluidity
and, therefore, the experimental results must be interpreted
with special care. In the framework of the phenomenologi-
cal two-fluid model helium II is described as consisting of
two independent fluids: the inviscid superfluid of density
rs and the normal fluid of dynamic viscosity m and den-
sity rn, where r � rs 1 rn. In turbulent flow, however,
the presence of quantized vortices couples the two fluids
together (at least for long wavelengths), via mutual friction
[3]. Based on recent theoretical and experimental inves-
tigations [3,4], in the temperature range covered in the
present study, turbulent helium II flow resembles a classi-
cal flow possessing an effective kinematic viscosity n of
order m�r. In particular, the usual HIT relationship
relating turbulent energy dissipation per unit volume to
the mean square vorticity applies: 2dE�dt � ´ � nv2.
Here the vorticity is defined as v�t� � kL�t�, where k is
the quantum of circulation. Note that Vinen’s paper [3]
0031-9007�00�85(14)�2973(4)$15.00
is a careful study which needs to be read to understand
the underlying quantum nature of this experiment. This
technique allows measurements of vorticity from �104 to
�0.01 Hz [5]. It is this unprecedented range of observed
values of vorticity and flexibility in ReM that allows de-
tection of several distinctly different regimes of the decay
and makes our system unique in the study of turbulence.
Note that for most of the decay v ~ t23�2 so that the rela-
tionship ´ � nv2 implies we are observing over 8 orders
of decaying turbulent energy, clearly an impossible goal
for any conventional laboratory experiment (reaching such
a dynamic range in a classical wind tunnel such as in [6]
would require its test section to be more than 1000 km
long). It has been astonishing to us that a classical model
should account for such a wide range of decay. We use
this method in a temperature range 1.2 , T , 2 K, for
which rn�r varies by more than a factor of 10. Despite
this large variation in the normal fluid fraction, we observe
no appreciable difference in the turbulent decay curves
obtained over this wide temperature range.

An example of the decay data is shown in Fig. 1. The
observed values of vorticity are evaluated from measure-
ment of the time dependent recovery amplitude of the
standing second sound resonance, initially suppressed by
the presence of quantized vortices created due to motion
of the grid through the channel [5]. The second sound
is transmitted and detected via circular gold plated nu-
clepore membranes mounted flush in the wall across the
channel. We therefore obtain information from a measur-
ing volume of order d3 � 1 cm3. It is this natural integra-
tion that bypasses tedious statistical analysis involved in
any local velocity measurements in conventional grid tur-
bulence experiments. It provides enormous sensitivity and
unprecedented dynamical range, making it very useful and
complementary to classical turbulence studies.

As it takes a time t0 � d�Vg to tow the grid through
measuring volume, we use only the data obtained on time
scales longer than t0 and 8tLI , where tLI is the time
constant of the lock-in amplifier used for detection of the
amplitude of the second sound signal. The velocity of
second sound exceeds that of the moving grid at least by an
order of magnitude and does not restrict the time resolution
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FIG. 1. The decaying helium II vorticity measured at T �
1.3 K for the indicated ReM . Each curve represents an aver-
age of three individual decays. As the decay curves tend to
collapse on the universal curve, we shifted them for clarity by
a factor of 2 downwards, the uppermost remaining unchanged.
The early part of the vorticity decay displays a power law with
exponent 211�10 (see left inset, showing normalized data for
ReM � 104) and later 25�6 (see right inset, showing normal-
ized data for ReM � 1.5 3 105, 2.5 3 104, and 5 3 103). Af-
ter saturation, typically several orders of magnitude of decaying
vorticity closely follow the power law with exponent 23�2, rep-
resented by the thick solid line.

of the experiment. Another time scale restriction comes
from the condition how soon the grid turbulence can be
considered HIT [7].

Implementing these time scale restrictions, the vorticity
appears to follow v�t� ~ �t 1 t��21.1 � t21.1, in agree-
ment with the classical grid turbulence data obtained in
wind tunnels, where a number of investigators found the
power law E�t� ~ �t 1 t��2a with a equal or slightly ex-
ceeding 1.2 and virtual origin time t� around 3.5 meshes
downstream [6,7]. This is the first regime of the decay
(left inset in Fig. 1), widely investigated in classical wind
tunnel experiments (and for most of them the only one
accessible).

The decay rate then slows down and for some time the
decaying vorticity displays the second regime, where it
now follows a power law v�t� ~ t25�6, as evident from
the right inset in Fig. 1. Later the power law changes
still again and the vorticity decay follows a power law
with exponent 23�2, the third regime of the decay. The
switchover is clearly visible from Fig. 2 showing the com-
pensated decay data. For the first time we report the fourth
and last regime—the late exponential decay—clearly il-
lustrated by the inset in Fig. 2.

Most of the observed decay can be predicted and de-
scribed by a purely classical phenomenological spectral
model of decaying HIT [2,7]. The model assumes that at
early times the decaying grid turbulence displays the gen-
erally accepted form of the 3D spectrum for HIT, of a form
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FIG. 2. The decaying vorticity multiplied by �t 1 t��3�2 �
t3�2, measured at T � 1.65 K. The data sets from left to
right correspond to ReM � 2 3 105, 1.5 3 105, 105, 5 3 104,
2.5 3 104, and 104, each being an average of three individual
decays. Except for the last one, the data sets are plotted up
to 10tsat; the late decay for all of them is shown in the inset.
The early part of the decay displays power laws with exponents
211�10 and later 25�6, as indicated by straight solid lines next
to the data sets. After saturation, several orders of magnitude
of decaying vorticity follow expression (4), using C � 1.62,
n � 2.28 3 1024 cm2�s [4] and g � 0.418, represented by the
curved thick solid line. The influence of growing Kolmogorov
length scale is indicated by the difference from the horizontal di-
rection, representing expression (3), i.e., 23�2 power law. The
inset shows the late decay of the same data sets compared with
expression (4). The late decay can be characterized as exponen-
tial, of a form exp�2t�t0� with t0 � 29 s, represented by the
straight solid line.

E�k� � 0; k # kd � 2p�d ,

E�k� � Akm; m � 2 2p�d # k # k1�t� ,

E�k� � C´2�3k25�3; (1)

k2�t� # k # keff
h � g�´�n3

eff�1�4 � 2p�heff ,

E�k� � 0; k $ keff
h ,

which reflects the physical restriction that eddies larger
than the size of the channel cannot exist and adopts
the Kolmogorov K41 form of the inertial range, i.e.,
neglects intermittency. Here A is a constant with units
(lengthm13�time2). Also, the high wave number exponen-
tial tail of the spectrum is approximated by a sharp cutoff at
the effective Kolmogorov length scale, heff, by introduc-
ing the dimensionless factor g of order unity. We assume
the 3D Kolmogorov constant C � 1.62 6 0.17, based
on a number of classical experiments [8]. In the vicinity
of the energy containing length scale le�t� � 2p�ke�t�,
where k1�t� , ke�t� , k2�t�, the spectral energy density
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displays a smooth broad maximum whose analytical form
is not specified. Evaluating the total turbulent energy
by integrating the 3D energy spectrum over all k leads
to a differential equation for decaying turbulent energy.
Applying the condition ´ � nv2, one gets a differential
equation for decaying vorticity. A simplified version of
the model was outlined in [2]; the full version (including
intermittency corrections) has appeared elsewhere [7].

At the early decay the spectrum stays self-similar. For
d ¿ le ¿ heff, the energy decay is predicted to follow
E�t� ~ �t 1 t��22��m11���m13��. Comparison with both the
wind tunnel [6] and helium II data [7] suggests the virtual
origin position within a few mesh units downstream of
the grid. This is the first regime of the decay, during
which the energy containing length scale grows as le ~

�t 1 t��2��m13�. Applying condition ´ ~ v2 yields

v�t� ~ �t 1 t���3m15���2m16� � t�3m15���2m16� (2)

and assuming validity of the Saffman invariant (m � 2)
[9] we obtain v�t� ~ t211�10, i.e., the first regime of the
decaying vorticity, as illustrated in Fig. 1. Experimentally,
the power law is very sensitive to the exact value of virtual
origin time. Because of the geometry of our apparatus,
the parameter space for observing this first regime of the
decay is rather limited, but clearly observable [7].

As the turbulence decays further and le grows, the low-
est physically significant wave number kd becomes closer
to the broad maximum around 2p�le. The low wave num-
ber part of the spectrum cannot be any longer characterized
by Akm with m � 2, but rather by some effective power
0 # m # 2 that decreases as the turbulence decays. Equa-
tion (2) then shows that the decay rate slows down. As
le approaches d, m becomes effectively zero and we ar-
rive at the second regime of the decay characterized by
v�t� ~ t25�6. Note that these simplified power law argu-
ments do not hold for the decay of the turbulent energy as
discussed in [7].

At the saturation time tsat, the vorticity reaches its satu-
ration value vsat. The growth of le is completed and sub-
sequently le � d. Still neglecting the cutoff of the spectral
energy at 2p�heff, the further decay is predicted to be of
the form [1,2]

v�t� �
3
p

3 d
2p

s
C3

neff
�t 1 t���23�2 (3)

with the virtual origin time t��. Therefore, no matter what
value ReM is (providing it is high enough to neglect vis-
cosity corrections [7]), in the finite size box the decaying
turbulence ought to reach this universal third regime of the
decay.

Note that the virtual origin time t�� generally differs
from t� introduced above [2,7]. The simplified spectral de-
cay model that approximates the broad energy maximum
near le by a kink predicts t�� � 4tsat�5 [2], but without
a detailed knowledge of the functional form of the energy
spectrum near 2p�le a quantitative prediction is not pos-
sible. It is plausible to assume, however, that for t ¿ tsat
relationship (3) can be used to obtain the combination
C3�n [4]. From the experimental data it appears that
t� and t�� do not differ significantly and for our analy-
sis of the further decay we therefore assume t�� � t� �
3.5M�Vg [6].

We used individual decay curves to define tsat and vsat
as an intersection point of the power laws v ~ t25�6 and
v ~ t23�2 superimposed on the decay data. The result
of this fitting procedure is summarized in Fig. 3. At all
temperatures we found tsat ~ 1�ReM , in accord with the
simplest variant of the spectral decay model [2]. Thus
even the basic and largely simplified spectral model that
approximates the broad maximum in E�k� around 2p�le

by a sharp kink qualitatively accounts for the change of the
decay rate associated with the saturation of le. That tsat
does not depend on temperature while rn changes over
an order of magnitude strongly suggests that the role of
quantum effects in helium II turbulence in this temperature
range can be accounted for by introducing an effective
kinematic viscosity [4] and justifies the applicability of a
purely classical model for its decay.

So far in our discussion we neglected the role of the high
wave number cutoff of the energy spectrum at 2p�heff.
As the turbulent energy (or vorticity) decays and the Kol-
mogorov length scale grows, the relative importance of this
cutoff grows and a simple power law can no longer de-
scribe the decay of vorticity. It is possible to show [7] that
after saturation of le the decaying vorticity can be more
accurately described by

v�t� �
33n

23g

µ
2p

d

∂2µ
tB

t 1 t�

∂3�2

cos3u , (4)

where

cos2�3u� �
t 1 t�

tB
; and tB �

16Cg4�3

9n

µ
d

2p

∂2

1 t�

�
16Cg4�3

9n

µ
d

2p

∂2

. (5)

FIG. 3. Saturation time versus ReM at different temperatures.
The solid line represents 33 000�ReM .
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Naturally, for g ! ` expression (4) reduces to a simple
power law (3). Formally, as the vorticity decays, heff �
�2pn3�4�g´1�4� � 2p�g

p
n�v becomes the size of the

channel at a time t 1 t� � 0.844tB, and thus the turbu-
lent energy becomes zero. Close to this stage the appli-
cability of the spectral model is no longer justified. From
Fig. 3 we can estimate tB of order 100 s and using (5) we
estimate g � 0.4. This matches the value of g needed
to describe the viscous corrections in classical wind tun-
nel data [7]. Expression (4) is used for comparison with
experimental data in Fig. 2. It describes the universal de-
cay—up to 5 orders of magnitude of decaying helium II
vorticity—for all starting ReM measured at any tempera-
ture. The departure from a single power law with expo-
nent 23�2 (Fig. 2) illustrates the increasing influence of
the growing Kolmogorov length scale in the decay.

Experimentally we have found a slight departure of the
experimental data from the theoretical line predicted by
the model towards higher values of vorticity (see Fig. 2).
There might be several reasons for this behavior. First, it
might occur due to extra production of vorticity by counter-
flow in the channel. The turbulence created by the towed
grid decays and, as a result, the temperature inside the
channel grows, stimulating counterflow of normal fluid
and superfluid inside the channel due to the fountain ef-
fect. The faster the grid was pulled, i.e., the higher the
ReM , the more vorticity is produced by counterflow. The
extra heat input could also result from friction between
the grid and the channel walls. It is possible, however,
that there is a deeper physical reason for this behavior
originating from the quantum nature of the helium II tur-
bulence. The quantum effects were taken into account
simply by introducing the effective kinematic viscosity,
somewhat larger than the kinematic viscosity based on total
fluid density [4].

As the Kolmogorov scale grows, it gradually ap-
proaches d and thus le which is already saturated by it.
Expression (4) describes the experimental data down to a
surprisingly low level of vorticity, of order v � 0.1 s21.
It corresponds to the vortex line density L � v�k �
100 cm22 and to the mean distance between quantized
vortex lines l � 1�

p
L � 1 mm. Still, the essentially

classical description of the decaying vorticity holds.
With no inertial scale left there is no energy transfer to-

wards higher wave numbers and the only possibility for
further decay is exponential viscous decay. This is the
fourth and last regime of decaying vorticity in a finite chan-
nel. Note that it differs from the final period of decay
observed in classical wind tunnels, as these can be essen-
tially regarded as infinitely large [2,7]. The last regime
is evident from the inset of Fig. 2, where the late decay
curves originating from various ReM display an exponen-
tial decay of the form v�t� ~ exp�2t�t0�. For t0 � 29 s,
the exponential decay is practically indistinguishable from
the spectral model prediction. Performing systematic mea-
surements for various ReM at T � 1.3, 1.65, and 1.9 K, we
obtained t0 � �27 6 5� s. Thus any possible temperature
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dependence of this effect must be rather weak, within con-
straints of the error bars for t0.

This last decay regime can be considered in analogy
with the decay of the oscillatory motion at some particu-
lar wave number in viscous fluids, characterized by ex-
ponential decay of the energy E ~ E0 exp�2bt�, where
the decay coefficient b � 2nk2 [10]. For k � 2p�d and
n of order 1024 cm2�s it suggests a characteristic decay
time close to the observed one. On the other hand, at
the end of the fourth regime the vorticity has decreased to
�0.01 s21 implying there are only a few quantized vortex
lines across the channel and applicability of any continuum
theory seems questionable. Clearly the explanation of the
fourth regime is a matter for further research.

To summarize, we have used superfluid helium II to
investigate the decay of grid turbulence in a finite chan-
nel. We have observed up to 6 orders of magnitude of
decaying helium II vorticity displaying four distinctly dif-
ferent regimes of decay. The form of the decay did not
vary with temperature over the range 1.2 , T , 2 K, de-
spite the fact that rn�r changed by more than a factor of
10. The decay can be described classically, except perhaps
for a slight departure from the predicted universal curve
at later times. Likely reasons for this departure are the
extra production of vorticity due to counterflow or a pos-
sible dependence of effective kinematic viscosity on the
Reynolds number, resulting from the quantum nature of
helium II turbulence. On the whole, our findings suggest
a deep similarity between conventional and superfluid grid
turbulence.
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