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Shear Instabilities of Freely Standing Thermotropic Smectic-A Films
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In this Letter we discuss theoretically the instabilities of thermotropic freely standing smectic-A films
under shear flow [3]. We show that, in Couette geometry, the centrifugal force pushes the liquid crystal
toward the outer boundary and induces smectic layer dilation close to the outer boundary. Under strong
shear, this effect induces a layer buckling instability. The critical shear rate is proportional to 1�

p
d,

where d is the thickness of the film.

PACS numbers: 61.30.Gd, 47.20.Hw, 68.15.+e
Consider shear flow experiments on freely standing fluid
films in a Couette geometry (Fig. 1), in which the inner
cylinder is rotating with speed y0, and the outer cylinder
is at rest. Both cylinders are perpendicular to the plane
of the film. When a soap film is used in the experiment,
the laminar flow between the cylinders is stable up to very
large y0, and the film gets thicker towards the outer cylin-
der due to centrifugal force [1]. Brightly colored patterns
are exhibited because of this thickness variation. However,
for smectic-A films with smectic layers parallel to the air-
fluid interface, which were treated as two-dimensional sys-
tems in many analyses [2], there exists a critical speed yc,
such that, when y0 is above yc, defects are generated [3].
This clearly indicates that the layer structure becomes im-
portant, and the system can no longer be treated as two
dimensional. On the other hand, experimental [4–7] and
theoretical [8,9] studies on the rheological properties of
bulk smectic-A systems show that, under shear flow, bulk
systems are most stable when the layers are parallel to the
shear plane. Thus the finite thickness and/or the free sur-
faces have to be essential to the observed defect generation
in the experiments on freely standing smectic-A films.

In this Letter, we study the rheology of freely standing
thermotropic smectic-A films under shear flow. In Cou-
ette geometry the centrifugal force pushes the liquid crys-
tal away from the inner wall, which induces a layer dilation
close to the outer wall. When this dilation exceeds a certain
limit, the smectic layers are no longer stable against small
undulational perturbations, hence, defects are generated.
For typical materials and experimental setups, the strain
induced by centrifugal force provides a critical velocity,
yc, comparable to the experimentally observed result [3].
Thus we conclude that this scenario is a good candidate for
the mechanism which is responsible for the defect genera-
tion in Ref. [3]. Our analysis indicates that this instability
is a result of the interplay between crossover and bound-
ary effects (2D to 3D, and the existence of free surfaces),
and the externally imposed flow. This instability is similar
to the classical Helfrich-Hurault–type instabilities [10],
but the film has free surfaces and is far from equilibrium.
It is also similar but not identical to (Eckhaus) instabilities
in convection roll patterns [11], in which both squeezing
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and dilating the system by controlling the boundaries leads
to instabilities.

Strain induced buckling instability for freely standing
smectic-A films.—We begin with the classical strain in-
duced buckling instability for smectic-A in a new geome-
try, i.e., freely standing films. Let the smectic layers be
parallel to the surfaces of the film, which are located at
z � 6d�2, and ignore the boundaries in the x and y di-
rections. The total elastic free energy of the film is [12,13]

F � a

µZ
dA1 1

Z
dA2

∂

1
1
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Z
d2r�

Z d�2

2d�2
dz �B�E�u��2 1 K1�≠2
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where
R

dA6 �
R

d2r�

q
1 1 � �≠��u�z�6d�2�2 is the area

of the surfaces, u is the smectic layer displacement, a

is the surface tension, K1 and B are layer undulation and
compression elastic moduli, and E�u� � ≠zu 2 1

2 � �≠�u�2

is the layer dilation. The continuity of the normal stress at
the surfaces requires [14–16]

6�BE�u��z�6d�2 � a�dA6�du� 1 P6
ext , (2)
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FIG. 1. Schematic of the experimental setup in Couette ge-
ometry; the z axis points out of the paper.
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where d�du stands for variational differentiation, and P6
ext

are the external normal stresses acting on the surface at
z � 6d�2.

Suppose the smectic layers are subject to a uniform but
opposite external stress P6

ext � 6Pext on the surfaces; for
small Pext the layers are uniformly dilated with ≠zu �
Pext�B � e. We study the stability of small layer un-
dulations of the form u � u0 1 u1 with u0 � ez and
u1 � UN�qy� sin�qyy� cos�qzz�, where, for given qy . 0,
qz . 0 is chosen such that Eq. (2) is satisfied, and the nor-
malization factor N�qy� is chosen such that �N�qy��2 3Rd�2

2d�2 dz cos2�qzz� � 1.
Expanding F to O�U2� and using the boundary condi-

tion for u1 to the corresponding order, one finds

F ~
1
4

�B�q2
z 2 eq2

y� 1 K1q4
y�U2, (3)

where, from Eq. (2), qz satisfies the equation

qzd � �ldqy�2 cot
qzd
2

, (4)

in which ld �
p

ad�B is a characteristic length. As
discussed in Ref. [15], this length characterizes the
crossover from behavior dominated by surface tension to
behavior dominated by layer elasticity in freely standing
smectic-A films. Since we are interested in the onset
of instability, we consider only the smallest qz which
satisfies Eq. (4) throughout this Letter. From Eq. (3) it
is clear that, when the induced strain e is large enough,
there is an instability, and one would expect growth of the
amplitude U.

From Eq. (3), the critical strain for given qy is ec�qy� �
q2

z �q2
y 1 l2q2

y , where l �
p

K1�B is a characteristic
length for smectic A [12]. Defining dimensionless parame-
ters X � qzd, Q � qyld , then

ec�Q� � g
l

d

µ
X2

Q2 1
Q2

g2

∂
� g

l

d
T �Q, g� , (5)

where g � a�
p

K1B is a dimensionless parameter; typi-
cally g � O�1�. The exact value of X cannot be found
analytically, but numerically one finds that T �Q, g� has a
minimum at Q � Q� $ 0. From the definition of T �Q, g�,
Q� depends only on g. For given material parameters,
one can find the minimum critical strain, e� � ec�Q��,
numerically, which depends only on g and l�d. Figure 2
shows Q� and 6e�d�lg as functions of g. Notice that there
is a gm such that, when g , gm, the first unstable mode
has infinite wavelength. We can estimate this parameter
by expanding the equation for X around Q � 0, and then
substituting this approximate value of X into Eq. (5). We
find X2�Q2 1 Q2�g2 � 2 1 �1�g2 2 1�3�Q2 1 O�Q4�.
For the first unstable mode to occur at Q � 0, the coef-
ficient of the Q2 term in the small Q expansion of the
critical strain has to be positive, yielding gm �

p
3. On

the other hand, when 1�g �
p

K1B�a ! 0, the surface
tension is sufficiently large such that the instability es-
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FIG. 2. The first unstable mode Q� and the critical strain
6e�d�lg for freely standing smectic-A films under a uniform
strain.

sentially becomes the Helfrich-Hurault instability origi-
nally derived for hard boundaries, where the first unstable
mode is q�

y �
p

p�dl and the minimum critical strain is
2pl�d [10].

In the shear flow experiments conducted in Ref. [3], the
freely standing smectic-A films were made of 4-cyano-
49-octylbiphenyl (8CB), which has a � 25 dyn�cm [17],
B � 5 3 107 dyn�cm2 [18], K1 � 5 3 1027 dyn [19],
i.e., g � 5. From Fig. 2 one finds that (in equilibrium),
under a uniform layer dilation, the minimum critical strain
e� � lg�d � a�Bd, and the first unstable mode has
wavelength on the order of ld .

Shear induced instability for freely standing smectic-A
films in the Couette geometry.—The experimental setup is
shown in Fig. 1. We choose cylindrical polar coordinates
to describe the system in which the z axis is the axis of the
cylinders. The radii of the inner and outer cylinders are RI

and RO , respectively. Let the film be suspended horizon-
tally on the rf plane between the inner and outer cylin-
ders with thickness d (from z � 2d�2 to z � d�2) [20].
In principle, d depends on position in the rf plane. The
smectic layers are parallel to the rf plane away from the
meniscus. The films are usually thicker near the meniscus
due to wetting [21], and the liquid crystal near the menis-
cus acts similar to a reservoir of material in shear flow ex-
periments [3]. Furthermore, the interactions between the
liquid crystal and the walls also cause edge dislocations
[22]. Since our focus is the effect of shear flow, to avoid
additional complications, we assume both walls to be neu-
tral to the liquid crystals, and neglect the effect of gravity
and the surrounding air so that in equilibrium the smectic
film is perfectly flat with a uniform thickness d � d0. As
a result, in our model there is no material reservoir near
the meniscus, and the total volume of the film under shear
flow is the same as in the film at rest, a simplification
which does not occur in real experiments.
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The equations of motion for this system in the isother-
mal, incompressible limit are [13]

≠u
≠t

1 v ? =u � yz 1 zph , (6)

r

µ
≠v
≠t

1 v ? =v
∂

� 2=p 1 hẑ 1 h=2v , (7)

where v also satisfies the incompressibility condition
= ? v � 0. Here, v is the velocity of the liquid crystal,
zp is the permeation constant, p is the pressure, and h �
�≠ ? �dF�d �≠u�. In general, the viscosity h should be a
second rank tensor due to the anisotropy of the smectic-A
phase [12,13]. However, to simplify the expressions we
choose h to be a scalar. Because of the particular experi-
mental geometry under consideration, the results of our
analysis, i.e., the steady state configuration and the linear
stability analysis, are not affected by this simplification.
A similar calculation with full anisotropic viscosity yields
the same results.

The stress should be continuous across the free surfaces,
which leads to the following conditions [16]:µ
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(10)

We take no-slip boundary conditions for the velocity on
the inner and outer walls, i.e., v � y0f̂ at r � RI , and
v � 0 at r � RO . We first consider the steady state. Sub-
sequently, we will study the linear stability of the steady
state. We assume rotational invariance around the z axis.
As a result it is natural to set yr � 0 everywhere. Then
incompressibility and no-slip boundary conditions lead to
yz � 0. The momentum equation, Eq. (7), now becomes
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, (11)
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The solution of Eq. (12) which satisfies the boundary con-
ditions is yf � ar 1 b

r , where a � 2RIy0��R2
O 2 R2

I �,
b � RIR

2
Oy0��R2

O 2 R2
I �.

With yz � 0 and yf given above, the steady state layer
displacement has to satisfy [from Eqs. (6) and (13)] h �
B≠2

zu 2 K1≠
4
�u � 0, and ≠p

≠z � 0; i.e., the pressure de-
pends only on r . Now one can solve Eq. (11) by direct
integration, leading to
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where p�RI� will be determined later, by conservation
of total volume. Since p�r� 2 p�RI � is positive definite
for nonvanishing yf, the pressure near the outer wall is
larger than the pressure near the inner wall. The bound-
ary condition for the normal stress, the condition h � 0,
and Eq. (14) together with the conservation of total volume
will completely determine the steady state configuration.

To understand the effect of this centrifugal force in-
duced pressure, let us first consider the long wavelength
behavior of the layer displacement to linear order in
u. To this order the boundary condition for the normal
stress is B�≠zu�z�6d�2 � 6a�≠2

�u�z�6d�2 1 �p�z�6d�2.
Simple dimensional analysis [replacing ≠z by 1�d, ≠� by
1��RO 2 RI�, and typically B�d ¿ a��RO 2 RI �2 [20] ]
shows that, for nonvanishing p, the surface tension term is
negligible compared to the layer compression for typical
experiments, and the layer dilation on the surfaces is
related to the pressure by

B�≠zu�z�6d�2 � �p�z�6d�2 . (15)

The pressure “pushes” the smectic layers on the free sur-
faces, but with a very large characteristic in-plane length
scale (RO 2 RI ). Since the walls are neutral to the liquid
crystal, and h � 0 everywhere, the layer displacement is
approximately u �

p�r�
B z � ez. This layer displacement

causes a change of the smectic film thickness from d0 to
d0�1 1 p�r��B�. Since the total volume of the liquid crys-
tal in the steady state is the same as that of the initial state,
we determine the pressure at r � RI from the conditionRRO

RI
dr �2prd0� �

RRO

RI
dr �2prd0� p�r�

B 1 1��. One finds
the layers are compressed for small r but are dilated for
large r due to the effect of centrifugal force and conserva-
tion of total volume.

Consider a small patch located near the outer cylinder
having size l ø RO 2 RI . The stability to a layer undu-
lation with wave vector in the radial direction can be ana-
lyzed as follows. Choosing x̂ � 2f̂, ŷ � r̂, when r is
close to RO with RO 2 r ¿ l, we can work in Cartesian
coordinates and ignore the effect of the walls. The small
layer undulation can be expressed as UN�qy� sin�qyy� 3

cos�qzz�. Since the shear flow is in the x direction, the
small layer undulation with in-plane wave vector in the
y is not convected by the flow [i.e., in Eq. (6), �y ? �=u
vanishes], and it evolves towards h � �= ? dF�d �=u � 0.
Thus the equilibrium analysis can be used to show that,
for large enough y0, the induced layer dilation close to the
outer cylinder can cause a layer undulation instability. The
fact that the first unstable mode for 8CB has a wavelength
on the order of ld justifies our use of RO 2 RI ¿ l [20].
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We are now in a position to estimate yc for the experi-
mental geometry used Ref. [3], i.e., RI � 1.2 cm, RO �
1.5 cm. Choosing r � RO , and estimating e� � a�Bd
to estimate the layer dilation close to the outer cylinder
and the critical strain, one finds, for a typical material,
r � 1 g�cm3, a � 25 ergs�cm2, y2

cd � 1500 cm3�s2.
For d � 3.5 3 1024 cm, one finds yc � 2.1 3 103 cm�s,
and the critical shear rate is �gc � yc��RO 2 RI� � 7 3

103 s21. The experimental critical shear rate is about
103 s21. Considering the simplifications made in this
model, the agreement indeed indicates that the effect of
layer dilation induced by centrifugal force can cause the
instability observed in the experiments. Notice that our
model shows that the initial instability should occur close
to the outer boundary of the Couette cell, and this is
consistent with the experimental observation [23].

Concluding remarks.—We have shown that freely
standing smectic-A films are in principle unstable against
strong shear flow. The characteristic length ld introduced
in Ref. [15] plays an important role. We considered
specifically the Couette geometry and included the effects
of centrifugal force. We showed that centrifugal force
is capable of inducing a layer dilation close to the outer
cylinder. When the shear rate is large enough, defects are
generated due to a layer buckling instability similar to
Helfrich-Hurault– type instability [10], and the calculated
critical shear rate is on the same order as the experimental
measurements.

However, notice that the linear stability analysis in this
Letter is appropriate only for layer undulations with in-
plane wavelength small compared to RO 2 RI . As we
point out, when g � a�

p
K1B ,

p
3, the first unstable

mode against a uniform layer dilation has very long wave-
length. Hence, our analysis does not apply to certain ma-
terials with weak surface tension. For the material (8CB)
used in Ref. [3], g � 5, and our analysis is appropriate.

Our calculations have assumed perfectly aligned smec-
tic layers and ignored any interactions between the air or
solid boundaries with the liquid crystal. Edge dislocations
and the material reservoir commonly observed near the
meniscus [22], which may not be negligible in the experi-
ment, are also ignored in our approach. Because of these
simplifications, our work should be compared only semi-
quantitatively with the experiments. We also note that, un-
der strong shear flow [24], defects are generated in freely
standing lyotropic smectic-A films in Couette geometry.
Since the density of the solvent is an extra hydrodynamic
variable in lyotropic systems [25,26], whether the mecha-
nism for defect generation is the same as that for the ther-
motropic systems remains to be answered. However, our
study has provided the basic ingredients of the experimen-
tal instability, i.e., the finite film thickness, surface ten-
sion, and the geometry of the experimental setup. It also
provides the physical picture of the instability, i.e., the
differences between a smectic-A film and a soap film in
Couette geometry, and the differences between a bulk sys-
tem and a freely standing film. Hence, we believe that we
2960
have achieved our goal, which was to elucidate the basic
mechanism behind the interesting experiments reported in
Ref. [3]. We also add to the growing catalog of fascinating
properties of smectic-A films far from equilibrium.
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